Remaining Useful Life Prognostics for Lithium-ion Battery Based on Gaussian Processing Regression Combined with the Empirical Model

نویسندگان

  • Shan Yin
  • Jingyue Pang
  • Datong Liu
  • Yu Peng
چکیده

Data-driven techniques based on Bayesian framework like Gaussian Process Regression (GPR) can not only predict the lithium-ion battery Remaining Useful Life (RUL), but also provide the uncertainty representation. However, it is always difficult to choose the covariance function of GPR and the confidence bound is usually large if the training data are not enough. In order to solve this problem, a combining method is proposed, it is a prognostic framework based on GPR model combined with Empirical Model (EMGPR) to realize the lithium-ion battery RUL prediction. EMGPR has the advantages of predicting the tendency and uncertainty management for RUL estimation. The modeling process of EMGPR consists of two steps. The self-deterministic part, which reflects the real physical process of battery degradation, is approximated by the empirical model. And the disturbance part, which is caused by random noise such as measurement and environment noise, is expressed by the GPR model. In application, two key factors of EMGPR are focused. Firstly, the prediction result is not accurate enough if the training data are not very reliable. In this case, more reliable training data should be selected optimized. Secondly, the characteristic of the disturbance is involved to determine the kernel function of GPR model. With this EMGPR framework, the RUL result is estimated with uncertainty representation, as well, the covariance function of GPR is easy to choose. Experiments with NASA PCoE and CALCE battery data show the satisfactory result can be obtained with the EMGPR approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prognostics of Lithium-Ion Batteries Based on Battery Performance Analysis and Flexible Support Vector Regression

Accurate prediction of the remaining useful life (RUL) of lithium-ion batteries is important for battery management systems. Traditional empirical data-driven approaches for RUL prediction usually require multidimensional physical characteristics including the current, voltage, usage duration, battery temperature, and ambient temperature. From a capacity fading analysis of lithium-ion batteries...

متن کامل

Development of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm

Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites.  In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...

متن کامل

Lithium-ion Battery Remaining Useful Life Estimation Based on Nonlinear AR Model Combined with Degradation Feature

Long term prediction such as multi-step time series prediction is a challenging prognostics problem. This paper proposes an improved AR time series model called ND-AR model (Nonlinear Degradation AutoRegression) for Remaining Useful Life (RUL) estimation of lithium-ion batteries. The nonlinear degradation feature of the lithiumion battery capacity degradation is analyzed and then the non-linear...

متن کامل

A Study on Remaining Useful Life Prediction for Prognostic Applications

We consider the prediction algorithm and performance evaluation for prognostics and health management (PHM) problems, especially the prediction of remaining useful life (RUL) for the milling machine cutter and lithium‐ion battery. We modeled battery as a voltage source and internal resisters. By analyzing voltage change trend during discharge, we made the prediction of battery remain discharge ...

متن کامل

Review of the Remaining Useful Life Prognostics of Vehicle Lithium-Ion Batteries Using Data-Driven Methodologies

Lithium-ion batteries are the primary power source in electric vehicles, and the prognosis of their remaining useful life is vital for ensuring the safety, stability, and long lifetime of electric vehicles. Accurately establishing a mechanism model of a vehicle lithium-ion battery involves a complex electrochemical process. Remaining useful life (RUL) prognostics based on data-driven methods ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013