Synaptic Conductance Estimates of the Connection Between Local Inhibitor Interneurons and Pyramidal Neurons in Layer 2/3 of a Cortical Column.

نویسندگان

  • Jochen H O Hoffmann
  • H S Meyer
  • Arno C Schmitt
  • Jakob Straehle
  • Trinh Weitbrecht
  • Bert Sakmann
  • Moritz Helmstaedter
چکیده

Stimulation of a principal whisker yields sparse action potential (AP) spiking in layer 2/3 (L2/3) pyramidal neurons in a cortical column of rat barrel cortex. The low AP rates in pyramidal neurons could be explained by activation of interneurons in L2/3 providing inhibition onto L2/3 pyramidal neurons. L2/3 interneurons classified as local inhibitors based on their axonal projection in the same column were reported to receive strong excitatory input from spiny neurons in L4, which are also the main source of the excitatory input to L2/3 pyramidal neurons. Here, we investigated the remaining synaptic connection in this intracolumnar microcircuit. We found strong and reliable inhibitory synaptic transmission between intracolumnar L2/3 local-inhibitor-to-L2/3 pyramidal neuron pairs [inhibitory postsynaptic potential (IPSP) amplitude -0.88 ± 0.67 mV]. On average, 6.2 ± 2 synaptic contacts were made by L2/3 local inhibitors onto L2/3 pyramidal neurons at 107 ± 64 µm path distance from the pyramidal neuron soma, thus overlapping with the distribution of synaptic contacts from L4 spiny neurons onto L2/3 pyramidal neurons (67 ± 34 µm). Finally, using compartmental simulations, we determined the synaptic conductance per synaptic contact to be 0.77 ± 0.4 nS. We conclude that the synaptic circuit from L4 to L2/3 can provide efficient shunting inhibition that is temporally and spatially aligned with the excitatory input from L4 to L2/3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Cortical inhibitory cell types differentially form intralaminar and interlaminar subnetworks with excitatory neurons.

The neocortical circuit is composed of excitatory principal neurons and inhibitory interneurons. Recent advances have established that multiple subnetworks of synaptically coupled excitatory neurons provide distinct pathways for information flow through the cortical circuit. Here we have investigated how inhibitory interneurons are incorporated into these excitatory subnetworks in the rat front...

متن کامل

GABAergic and pyramidal neurons of deep cortical layers directly receive and differently integrate callosal input.

We studied the involvement of deep cortical layer neurons in processing callosal information in the rat. We observed with electron microscopy that both parvalbumin (PV)-labeled profiles and unlabeled dendritic spines of deep cortical layer neurons receive synapses from the contralateral hemisphere. Stimulation of callosal fibers elicited monosynaptic excitatory postsynaptic currents in both lay...

متن کامل

Efficient recruitment of layer 2/3 interneurons by layer 4 input in single columns of rat somatosensory cortex.

Interneurons in layers 2/3 are excited by pyramidal cells within the same layer (Reyes et al., 1998; Gupta et al., 2000), but little is known about translaminar innervation of these interneurons by spiny neurons in the main cortical input layer 4 (L4). Here, we investigated (1) how efficiently L4 spiny neurons excite L2/3 interneurons via monosynaptic connections, (2) whether glutamate release ...

متن کامل

Sensory experience alters cortical connectivity and synaptic function site specifically.

Neocortical circuitry can alter throughout life with experience. However, the contributions of changes in synaptic strength and modifications in neuronal wiring to experience-dependent plasticity in mature animals remain unclear. We trimmed whiskers of rats and made electrophysiological recordings after whisker cortical maps have developed. Measurements of miniature EPSPs suggested that synapti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 25 11  شماره 

صفحات  -

تاریخ انتشار 2015