Canonical bases for subalgebras of factor algebras
نویسنده
چکیده
We introduce canonical bases for subalgebras of quotients of the commutative and non-commutative polynomial ring. The usual theory for Gröbner bases and its counterpart for subalgebras of polynomial rings, also called SAGBI bases, are combined to obtain a tool for computation in subalgebras of factor algebras.
منابع مشابه
Factor-SAGBI Bases: a Tool for Computations in Subalgebras of Factor Algebras
We introduce canonical bases for subalgebras of quotients of the commutative and non-commutative polynomial ring. A more complete exposition can be found in 4]. Canonical bases for subalgebras of the commutative polynomial ring were introduced by Kapur and Madlener (see 2]), and independently by Robbiano and Sweedler ((5]). Some notes on the non-commutative case can be found in 3]. Using the la...
متن کاملREDEFINED FUZZY SUBALGEBRAS OF BCK/BCI-ALGEBRAS
Using the notion of anti fuzzy points and its besideness to and nonquasi-coincidence with a fuzzy set, new concepts in anti fuzzy subalgebras in BCK/BCI-algebras are introduced and their properties and relationships are investigated.
متن کاملConnections between cylindric algebras and relation algebras
We investigate the class SRaCAn for 4 n < ! and survey some recent results. We see that RAn | the subalgebras of relation algebras with relational bases | is too weak, and that the class of relation algebras whose canonical extension has an n-dimensional cylindric basis is too strong to deene the class. We introduce the notion of an n-dimensional hyperbasis and show that for any relation algebr...
متن کاملCanonical Bases for Subalgebras on two Generators in the Univariate Polynomial Ring
In this paper we examine subalgebras on two generators in the univariate polynomial ring. A set, S, of polynomials in a subalgebra of a polynomial ring is called a canonical basis (also referred to as SAGBI basis) for the subalgebra if all lead monomials in the subalgebra are products of lead monomials of polynomials in S. In this paper we prove that a pair of polynomials {f, g} is a canonical ...
متن کاملCertain subalgebras of Lipschitz algebras of infinitely differentiable functions and their maximal ideal spaces
We study an interesting class of Banach function algebras of innitely dierentiable functions onperfect, compact plane sets. These algebras were introduced by Honary and Mahyar in 1999, calledLipschitz algebras of innitely dierentiable functions and denoted by Lip(X;M; ), where X is aperfect, compact plane set, M = fMng1n=0 is a sequence of positive numbers such that M0 = 1 and(m+n)!Mm+n ( m!Mm)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Computer Science Journal of Moldova
دوره 7 شماره
صفحات -
تاریخ انتشار 1999