GAA Deficiency in Pompe Disease Is Alleviated by Exon Inclusion in iPSC-Derived Skeletal Muscle Cells

نویسندگان

  • Erik van der Wal
  • Atze J. Bergsma
  • Tom J.M. van Gestel
  • Stijn L.M. in ‘t Groen
  • Holm Zaehres
  • Marcos J. Araúzo-Bravo
  • Hans R. Schöler
  • Ans T. van der Ploeg
  • W.W.M. Pim Pijnappel
چکیده

Pompe disease is a metabolic myopathy caused by deficiency of the acid α-glucosidase (GAA) enzyme and results in progressive wasting of skeletal muscle cells. The c.-32-13T>G (IVS1) GAA variant promotes exon 2 skipping during pre-mRNA splicing and is the most common variant for the childhood/adult disease form. We previously identified antisense oligonucleotides (AONs) that promoted GAA exon 2 inclusion in patient-derived fibroblasts. It was unknown how these AONs would affect GAA splicing in skeletal muscle cells. To test this, we expanded induced pluripotent stem cell (iPSC)-derived myogenic progenitors and differentiated these to multinucleated myotubes. AONs restored splicing in myotubes to a similar extent as in fibroblasts, suggesting that they act by modulating the action of shared splicing regulators. AONs targeted the putative polypyrimidine tract of a cryptic splice acceptor site that was part of a pseudo exon in GAA intron 1. Blocking of the cryptic splice donor of the pseudo exon with AONs likewise promoted GAA exon 2 inclusion. The simultaneous blocking of the cryptic acceptor and cryptic donor sites restored the majority of canonical splicing and alleviated GAA enzyme deficiency. These results highlight the relevance of cryptic splicing in human disease and its potential as therapeutic target for splicing modulation using AONs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disease modeling and lentiviral gene transfer in patient-specific induced pluripotent stem cells from late-onset Pompe disease patient

Pompe disease is an autosomal recessive inherited metabolic disease caused by deficiency of acid α-glucosidase (GAA). Glycogen accumulation is seen in the affected organ such as skeletal muscle, heart, and liver. Hypertrophic cardiomyopathy is frequently seen in the infantile onset Pompe disease. On the other hand, cardiovascular complication of the late-onset Pompe disease is considered as les...

متن کامل

TFEB overexpression promotes glycogen clearance of Pompe disease iPSC-derived skeletal muscle

Pompe disease (PD) is a lysosomal disorder caused by acid α-glucosidase (GAA) deficiency. Progressive muscular weakness is the major symptom of PD, and enzyme replacement therapy can improve the clinical outcome. However, to achieve a better clinical outcome, alternative therapeutic strategies are being investigated, including gene therapy and pharmacological chaperones. We previously used lent...

متن کامل

Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification.

Pompe disease is caused by autosomal recessive mutations in the acid alpha-glucosidase (GAA) gene, which encodes GAA. Although enzyme replacement therapy has recently improved patient survival greatly, the results in skeletal muscles and for advanced disease are still not satisfactory. Here, we report the derivation of Pompe disease-induced pluripotent stem cells (PomD-iPSCs) from two patients ...

متن کامل

Suppression of mTORC1 activation in acid-α-glucosidase-deficient cells and mice is ameliorated by leucine supplementation.

Pompe disease is due to a deficiency in acid-α-glucosidase (GAA) and results in debilitating skeletal muscle wasting, characterized by the accumulation of glycogen and autophagic vesicles. Given the role of lysosomes as a platform for mTORC1 activation, we examined mTORC1 activity in models of Pompe disease. GAA-knockdown C2C12 myoblasts and GAA-deficient human skin fibroblasts of infantile Pom...

متن کامل

Headache: A Presentation of Pompe Disease; A Case Report

Pompe disease, also termed glycogen storage disease type II or acid maltase deficiency, caused by deficient activity of acid alpha-glucosidase (GAA), the glycogen degrading lysosomal enzyme. As a result, massive lysosomal glycogen deposits in the numerous organs including the muscles. In Pompe disease weakness of truncal muscles is a prominent presentation which results in respiratory failure a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017