On the Spectrum of a Family of Preconditioned Block Toeplitz Matrices

نویسندگان

  • Ta-Kang Ku
  • C.-C. Jay Kuo
چکیده

Abstract. Research on preconditioning Toeplitz matrices with circulant matrices has been active recently. The preconditioning technique can be easily generalized to block Toeplitz matrices. That is, for a block Toeplitz matrix T consisting of N N blocks with M M elements per block, a block circulant matrix R is used with the same block structure as its preconditioner. In this research, the spectral clustering property of the preconditioned matrix R-1T with T generated by two-dimensional rational functions T(z,,zy) of order (p:r,q:,pu,qv) is examined. It is shown that the eigenvalues of R-1T are clustered around unity except at most O(M/u + N"/) outliers, where max(p, q) and max(p, qy). Furthermore, if T is separable, the outliers are clustered together such that R-1T has at most (2/x +1)(2+ 1) asymptotic distinct eigenvalues. The superior convergence behavior of the preconditioned conjugate gradient (PCG) method over the conjugate gradient (CG) method is explained by a smaller condition number and a better clustering property of the spectrum of the preconditioned matrix R-1T.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Analysis of Nonsymmetric Quasi-Toeplitz matrices with Applications to Preconditioned Multistep Formulas

The eigenvalue spectrum of a class of nonsymmetric preconditioned matrices arising in time-dependent partial differential equations is analyzed and discussed. The matrices generated by the underlying numerical integrators are small rank perturbations of block Toeplitz matrices; circulant-like preconditioned based on the former are considered. The eigenvalue distribution of the preconditioned ma...

متن کامل

Spectral behavior of preconditioned non-Hermitian multilevel block Toeplitz matrices with matrix-valued symbol

This note is devoted to preconditioning strategies for non-Hermitian multilevel block Toeplitz linear systems associated with a multivariate Lebesgue integrable matrix-valued symbol. In particular, we consider special preconditioned matrices, where the preconditioner has a band multilevel block Toeplitz structure, and we complement known results on the localization of the spectrum with global d...

متن کامل

Block Diagonal and Schur Complement Preconditioners for Block-Toeplitz Systems with Small Size Blocks

Abstract. In this paper we consider the solution of Hermitian positive definite block-Toeplitz systems with small size blocks. We propose and study block diagonal and Schur complement preconditioners for such block-Toeplitz matrices. We show that for some block-Toeplitz matrices, the spectra of the preconditioned matrices are uniformly bounded except for a fixed number of outliers and this fixe...

متن کامل

Developments in Preconditioned Iterative Methods with Application to Glacial Isostatic Adjustment Mo- dels

This study examines the block lower-triangular preconditioner with element-wise Schur complement as the lower diagonal block applied on matrices arising from an application in geophysics. The element-wise Schur complement is a special approximation of the exact Schur complement that can be constructed in the finite element framework. The preconditioner, the exact Schur complement and the elemen...

متن کامل

Circulant/Skewcirculant Matrices as Preconditioners for Hermitian Toeplitz Systems

We study the solutions of Hermitian positive definite Toeplitz systems Tnx = b by the preconditioned conjugate gradient method. For preconditioner An the convergence rate is known to be governed by the distribution of the eigenvalues of the preconditioned matrix A−1 n Tn . New properties of the circulant preconditioners introduced by Strang, R. Chan, T. Chan, Szegö/Grenander and Tyrtyshnikov ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 13  شماره 

صفحات  -

تاریخ انتشار 1992