Responses of endothelial cell and astrocyte matrix-integrin receptors to ischemia mimic those observed in the neurovascular unit.

نویسندگان

  • Richard Milner
  • Stephanie Hung
  • Xiaoyun Wang
  • Greta I Berg
  • Maria Spatz
  • Gregory J del Zoppo
چکیده

BACKGROUND AND PURPOSE Apposition of endothelial cells and astrocyte foot processes to the basal lamina matrix is postulated to underlie the cerebral microvessel permeability barrier. Focal cerebral ischemia induces rapid loss of select matrix-binding integrins from both cell compartments in the nonhuman primate. This study is the first to examine the conditions underlying integrin loss from these cell-types during ischemia in vitro and their relation to the changes in vivo. METHODS The impact of normoxia or standardized oxygen-glucose deprivation on integrin expression by murine primary cerebral endothelial cells and astrocytes grown on matrix substrates (collagen IV, laminin, and perlecan) of the basal lamina were quantitatively assessed by flow cytometry. RESULTS Endothelial cell expression of the beta1 and alpha 5 subunits significantly increased on all matrix ligands, whereas astrocytes displayed modest significant decreases in alpha 5 and alpha 6 subunits. Oxygen-glucose deprivation produced a further significant increase in subunit beta1 expression by both cell types, but a clear decrease in both alpha1 and alpha 6 subunits by murine astrocytes. CONCLUSIONS Ischemia in vitro significantly increased endothelial cell beta1 expression, which is consistent with the increase in beta1 transcription by microvessels peripheral to the ischemic core. The loss of alpha1 and alpha 6 integrins from murine astrocytes is identical to that seen in the nonhuman primate in vivo. These findings establish both isolated murine cerebral endothelial cells and astrocytes as potential integrin response cognates of microvascular cells of the neurovascular unit in primates, and allow determination of the mechanisms of their changes to ischemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bimodal Nature of Neurovascular Coupling

Neurons, by virtue of their complex and continuously changing signaling roles in brain, must be able to regulate access to energy in order to maintain their ability to communicate meaningful frequency-encoded information. This is accomplished by release of neurotransmitters to astrocytes that in turn signal the vascular system to increase cerebral blood flow (CBF). This process has been termed ...

متن کامل

Integrin-matrix interactions in the cerebral microvasculature.

The integrity of all organ systems requires faithful interaction between its component cells and the extracellular matrix (ECM). In the central nervous system (CNS), matrix adhesion receptors are uniquely expressed by the cells comprising the microvascular compartment, and by neurons and their supporting glial cells. Cells within the cerebral microvasculature express both the integrin and dystr...

متن کامل

PI3K/Akt Pathway Contributes to Neurovascular Unit Protection of Xiao-Xu-Ming Decoction against Focal Cerebral Ischemia and Reperfusion Injury in Rats

In the present study, we used a focal cerebral ischemia and reperfusion rat model to investigate the protective effects of Xiao-Xu-Ming decoction (XXMD) on neurovascular unit and to examine the role of PI3K (phosphatidylinositol 3-kinase)/Akt pathway in this protection. The cerebral ischemia was induced by 90 min of middle cerebral artery occlusion. Cerebral infarct area was measured by tetrazo...

متن کامل

tPA and proteolysis in the neurovascular unit.

One of the major recommendations emerging from the NINDS Stroke Progress Review Group was to shift the emphasis from a purely neurocentric view of cell death toward a more integrative approach whereby responses in all brain cells and matrix are considered during cerebral ischemia (see Figure). The concept of the neurovascular unit (fundamentally comprising endothelium, astrocyte, and neuron) pr...

متن کامل

The Effect of Laminin and Gelatin Extracellular Matrix on Short-Term Cultivation of Neonate Mouse Spermatogonial Stem Cells

Purpose: To compare the effect of laminin and gelatin on short-term culture of spermatogonial stem cells (SSCs) from neonatal mouse testes.Materials and Methods: Cell suspension containing SSCs were isolated from testes of 6 day-old mice and cultured in the presence of Glial-derived neuroterophic factor (GDNF), Epidermal Growth Factor (EGF) and Basic Fibroblastic Growth Factor (bFGF) on laminin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 39 1  شماره 

صفحات  -

تاریخ انتشار 2008