On Mean Convergence of Lagrange Interpolation for General Arrays

نویسندگان

  • D. S. Lubinsky
  • Ying Guang Shi
چکیده

For n 1, let fxjngnj=1 be n distinct points in a compact set K R and let Ln[ ] denote the corresponding Lagrange Interpolation operator. Let v be a suitably restricted function on K. What conditions on the array fxjng1 j n; n 1 ensure the existence of p > 0 such that lim n!1 k (f Ln[f ]) v kLp(K)= 0 for every continuous f :: K ! R ? We show that it is necessary and su cient that there exists r > 0 with sup n 1 k nv kLr(K) n X j=1 1 j 0 nj (xjn) <1: Here for n 1; n is a polynomial of degree n having fxjngnj=1 as zeros. The necessity of this condition is due to Ying Guang Shi. 1 The Result There is a vast literature on mean convergence of Lagrange interpolation, based primarily at zeros of orthogonal polynomials and their close cousins. See [3 { 10] for recent references. Most of the work dealing with mean convergence of Lagrange interpolation for general arrays involves necessary conditions [6], [9], since su cient conditions are hard to come by. Some su cient conditions for convergence of general arrays in Lp; p > 1, have been given in [3]. In a recent paper, the author showed that distribution functions and Loomis' Lemma may be used to investigate mean convergence of Lagrange interpolation in Lp; p < 1 [2]. Indeed those techniques show that investigating convergence of Lagrange interpolation in Lp is inherently easier for p < 1 than for p 1. Here we show that similar ideas may be used to solve the problem of whether there is convergence in weighted Lp spaces for at least one p > 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Weighted Mean Convergence of Lagrange Interpolation for General Arrays

For n 1, let fxjngnj=1 be n distinct points and let Ln[ ] denote the corresponding Lagrange Interpolation operator. Let W : R ! [0;1). What conditions on the array fxjng1 j n; n 1 ensure the existence of p > 0 such that lim n!1 k (f Ln[f ])W b kLp(R)= 0 for every continuous f : R ! Rwith suitably restricted growth, and some “weighting factor” ? We obtain a necessary and su¢ cient condition for ...

متن کامل

On Mean Convergence of Trigonometric Interpolants, and Their Unit Circle Analogues, for General Arrays

Let X be a triangular array of interpolation points in a compact subset of [0; 2 ]. We obtain a necessary and su¢ cient condition for the existence of p > 0 such that the associated trigonometric polynomials are convergent in Lp. We also examine Lagrange interpolation on the unit circle. The results are analogues of our earlier ones for Lagrange interpolation on a real interval. 1. The Result I...

متن کامل

Quadrature Sums and Lagrange Interpolation for General Exponential Weights

where > 0. Once the theory had been developed in its entirety, it became clear that one could simultaneously treat not only weights like those above, but also not necessarily even weights on a general real interval. See [3], [12], [16] for various perspectives on this type of potential theory and its applications. One important application is to Lagrange interpolation. Mean convergence of Lagra...

متن کامل

MEAN VALUE INTERPOLATION ON SPHERES

In this paper we consider   multivariate Lagrange mean-value interpolation problem, where interpolation parameters are integrals over spheres. We have   concentric spheres. Indeed, we consider the problem in three variables when it is not correct.  

متن کامل

On Boundedness of Lagrange Interpolation

We estimate the distribution function of a Lagrange interpolation polynomial and deduce mean boundedness in Lp; p < 1: 1 The Result There is a vast literature on mean convergence of Lagrange interpolation, see [4{ 8] for recent references. In this note, we use distribution functions to investigate mean convergence. We believe the simplicity of the approach merits attention. Recall that if g : R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006