A Nonmonotone Proximal Bundle Method with (Potentially) Continuous Step Decisions
نویسندگان
چکیده
We present a convex nondifferentiable minimization algorithm of proximal bundle type that does not rely on measuring descent of the objective function to declare the so-called serious steps; rather, a merit function is defined which is decreased at each iteration, leading to a (potentially) continuous choice of the stepsize between zero (the null step) and one (the serious step). By avoiding the discrete choice the convergence analysis is simplified, and we can more easily obtain efficiency estimates for the method. Some choices for the step selection actually reproduce the dichotomic behavior of standard proximal bundle methods but shed new light on the rationale behind the process, and ultimately with different rules; furthermore, using nonlinear upper models of the function in the step selection process can lead to actual fractional steps.
منابع مشابه
An inexact and nonmonotone proximal method for smooth unconstrained minimization
An implementable proximal point algorithm is established for the smooth nonconvex unconstrained minimization problem. At each iteration, the algorithm minimizes approximately a general quadratic by a truncated strategy with step length control. The main contributions are: (i) a framework for updating the proximal parameter; (ii) inexact criteria for approximately solving the subproblems; (iii) ...
متن کاملSolving the Unconstrained Optimization Problems Using the Combination of Nonmonotone Trust Region Algorithm and Filter Technique
In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems that is equipped with the filter technique. In the proposed method, the various nonmonotone technique is used. Using this technique, the algorithm can advantage from nonmonotone properties and it can increase the rate of solving the problems. Also, the filter that is used in...
متن کاملA Trust-region Method using Extended Nonmonotone Technique for Unconstrained Optimization
In this paper, we present a nonmonotone trust-region algorithm for unconstrained optimization. We first introduce a variant of the nonmonotone strategy proposed by Ahookhosh and Amini cite{AhA 01} and incorporate it into the trust-region framework to construct a more efficient approach. Our new nonmonotone strategy combines the current function value with the maximum function values in some pri...
متن کاملA nonmonotone inexact Newton method
In this paper we describe a variant of the Inexact Newton method for solving nonlinear systems of equations. We define a nonmonotone Inexact Newton step and a nonmonotone backtracking strategy. For this nonmonotone Inexact Newton scheme we present the convergence theorems. Finally, we show how we can apply these strategies to Inexact Newton Interior–Point method and we present some numerical ex...
متن کاملConvergence of Liu-storey Conjugate Method with Nonmonotone Armijo Line Search
In this paper, we develop a new nonmonotone Armijo-type line search for LS (Liu-Storey) conjugate gradient method for minimizing functions having Lipschitz continuous partial derivatives. The nonmonotone line search can guarantee the global convergence of original LS method under some mild conditions. AMS Subject Classification: 90C30, 65K05
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 23 شماره
صفحات -
تاریخ انتشار 2013