Rad51 Accumulation at Sites of DNA Damage and in Postreplicative Chromatin
نویسندگان
چکیده
Rad51, a eukaryotic RecA homologue, plays a central role in homologous recombinational repair of DNA double-strand breaks (DSBs) in yeast and is conserved from yeast to human. Rad51 shows punctuate nuclear localization in human cells, called Rad51 foci, typically during the S phase (Tashiro, S., N. Kotomura, A. Shinohara, K. Tanaka, K. Ueda, and N. Kamada. 1996. Oncogene. 12:2165-2170). However, the topological relationships that exist in human S phase nuclei between Rad51 foci and damaged chromatin have not been studied thus far. Here, we report on ultraviolet microirradiation experiments of small nuclear areas and on whole cell ultraviolet C (UVC) irradiation experiments performed with a human fibroblast cell line. Before UV irradiation, nuclear DNA was sensitized by the incorporation of halogenated thymidine analogues. These experiments demonstrate the redistribution of Rad51 to the selectively damaged, labeled chromatin. Rad51 recruitment takes place from Rad51 foci scattered throughout the nucleus of nonirradiated cells in S phase. We also demonstrate the preferential association of Rad51 foci with postreplicative chromatin in contrast to replicating chromatin using a double labeling procedure with halogenated thymidine analogues. This finding supports a role of Rad51 in recombinational repair processes of DNA damage present in postreplicative chromatin.
منابع مشابه
Cellular Dynamics of Rad51 and Rad54 in Response to Postreplicative Stress and DNA Damage in HeLa Cells
Homologous recombination (HR) is necessary for maintenance of genomic integrity and prevention of various mutations in tumor suppressor genes and proto-oncogenes. Rad51 and Rad54 are key HR factors that cope with replication stress and DNA breaks in eukaryotes. Rad51 binds to single-stranded DNA (ssDNA) to form the presynaptic filament that promotes a homology search and DNA strand exchange, an...
متن کاملActivation of the SUMO modification system is required for the accumulation of RAD51 at sites of DNA damage.
Genetic information encoded in chromosomal DNA is challenged by intrinsic and exogenous sources of DNA damage. DNA double-strand breaks (DSBs) are extremely dangerous DNA lesions. RAD51 plays a central role in homologous DSB repair, by facilitating the recombination of damaged DNA with intact DNA in eukaryotes. RAD51 accumulates at sites containing DNA damage to form nuclear foci. However, the ...
متن کاملHP1α recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair
Heterochromatin protein 1 (HP1), a major component of constitutive heterochromatin, is recruited to DNA damage sites. However, the mechanism involved in this recruitment and its functional importance during DNA repair remain major unresolved issues. Here, by characterizing HP1α dynamics at laser-induced damage sites in mammalian cells, we show that the de novo accumulation of HP1α occurs within...
متن کاملMRE11 complex links RECQ5 helicase to sites of DNA damage
RECQ5 DNA helicase suppresses homologous recombination (HR) possibly through disruption of RAD51 filaments. Here, we show that RECQ5 is constitutively associated with the MRE11-RAD50-NBS1 (MRN) complex, a primary sensor of DNA double-strand breaks (DSBs) that promotes DSB repair and regulates DNA damage signaling via activation of the ATM kinase. Experiments with purified proteins indicated tha...
متن کاملRole of Saccharomyces cerevisiae chromatin assembly factor-I in repair of ultraviolet radiation damage in vivo.
In vitro, the protein complex Chromatin Assembly Factor-I (CAF-I) from human or yeast cells deposits histones onto DNA templates after replication. In Saccharomyces cerevisiae, the CAC1, CAC2, and CAC3 genes encode the three CAF-I subunits. Deletion of any of the three CAC genes reduces telomeric gene silencing and confers an increase in sensitivity to killing by ultraviolet (UV) radiation. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 150 شماره
صفحات -
تاریخ انتشار 2000