The surface-tension-driven evolution of a two-dimensional annular viscous tube

نویسندگان

  • By I. M. GRIFFITHS
  • P. D. HOWELL
چکیده

We consider the evolution of an annular two-dimensional region occupied by viscous fluid driven by surface tension and applied pressure at the free surfaces. We assume that the thickness of the domain is small compared with its circumference so that it may be described as a thin viscous sheet whose ends are joined to form a closed loop. Analytical and numerical solutions of the resulting model are obtained and we show that it is well posed whether run forwards or backwards in time. This enables us to determine, in many cases explicitly, which initial shapes will evolve into a desired final shape. We also show how the application of an internal pressure may be used to control the evolution. This work is motivated by the production of non-axisymmetric capillary tubing via the Vello process. Molten glass is fed through a die and drawn off vertically, while the shape of the cross-section evolves under surface tension and any applied pressure as it flows downstream. Here the goal is to determine the die shape required to achieve a given desired final shape, typically square or rectangular. We conclude by discussing the role of our two-dimensional model in describing the three-dimensional tube-drawing process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نگاشت همدیس در طرح‌های انگشتی سافمن- تیلور

 We studied the growth of viscous fingers as a Laplacian growth by conformal mapping. Viscous fingers grow due to Saffman-Taylor instability in the interface between two fluids, when a less viscous fluid pushes a more viscous fluid. As there was an interest in the rectangular Hele-Shaw cell, we solved the Laplacian equation with appropriate boundary conditions by means of conformal mapping tech...

متن کامل

Exchange flow of two immiscible fluids and the principle of maximum flux

The steady, coaxial flow in which two immiscible, incompressible fluids of differing densities move past each other slowly in a vertical cylindrical tube has a continuum of possibilities due to the arbitrariness of the interface between the fluids. By invoking the presence of surface tension to at least restrict the shape of any interface to that of a circular arc or full circle, we consider th...

متن کامل

Instabilities of Thin Viscous Liquid Film Flowing down a Uniformly Heated Inclined Plane

Instabilities of a thin viscous film flowing down a uniformly heated plane are investigated in this study. The heating generates a surface tension gradient that induces thermocapillary stresses on the free surface. Thus, the film is not only influenced by gravity and mean surface tension but also the thermocapillary force is acting on the free surface. Moreover, the heat transfer at the free su...

متن کامل

Finite time breakup of viscous filaments

We analyze a model equation for the evolution of surface tension driven instabilities on a viscous jet. For a general class of initial data, it is proved that the jet breaks in finite time.

متن کامل

The nonlinear growth of surface-tension-driven instabilities of a thin annular film

The stability and initial growth rate of disturbances on an annular film lining a cylindrical tube have been the focus of several previous works. The further development of these disturbances as they grow to form stable unduloids or liquid bridges is investigated by means of a thin-film integral model. The model is compared both with perturbation theories for early times, and a numerical soluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007