IMF: An Incomplete Multifrontal LU-Factorization for Element-Structured Sparse Linear Systems

نویسندگان

  • Nick Vannieuwenhoven
  • Karl Meerbergen
چکیده

We propose an incomplete multifrontal LU-factorization (IMF) preconditioner that extends supernodal multifrontal methods to incomplete factorizations. It can be used as a preconditioner in a Krylov-subspace method to solve large-scale sparse linear systems with an element structure; e.g., those arising from a finite element discretization of a partial differential equation. The fact that the element matrices are dense is exploited to increase the computational performance and the robustness of the factorization through efficient partial pivoting. IMF is compared with the multilevel ARMS2, the level of fill-in ILU, and the threshold-based ILUTP preconditioners. Our experiments indicate IMF is competitive with ARMS2 on saddle-point problems arising in the solution of the steady-state Navier–Stokes equation. Experiments with element-structured matrices arising from structural engineering applications, found in the University of Florida sparse matrix collection, illustrate the robustness of IMF. Finally, the computational performance of IMF clearly surpasses that of the related ARMS2 preconditioner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An algebraic multifrontal preconditioner that exploits the low-rank property

We present an algebraic structured preconditioner for the iterative solution of large sparse linear systems. The preconditioner is based on a multifrontal variant of sparse LU factorization used with nested dissection ordering. Multifrontal factorization amounts to a partial factorization of a sequence of logically dense frontal matrices, and the preconditioner is obtained if structured factori...

متن کامل

Multilevel ILU With Reorderings for Diagonal Dominance

This paper presents a preconditioning method based on combining two-sided permutations with a multilevel approach. The nonsymmetric permutation exploits a greedy strategy to put large entries of the matrix in the diagonal of the upper leading submatrix. The method can be regarded as a complete pivoting version of the incomplete LU factorization. This leads to an effective incomplete factorizati...

متن کامل

Mfrs: an Algorithm for the Structured Multifrontal Solution of Large Sparse Matrices via Randomized Sampling

This paper presents strategies for the development of an efficient algorithm (MFRS) for the direct solutions of large sparse linear systems. The algorithm is based on a structured multifrontal method with randomized sampling. We propose data structures and access schemes for a type of rank structured matrices, called Hierarchically SemiSeparable (HSS) forms. A data tree structure is used for HS...

متن کامل

ILUS: An Incomplete LU Preconditioner in Sparse Skyline Format

Incomplete LU factorizations are among the most eeective preconditioners for solving general large, sparse linear systems arising from practical engineering problems. This paper shows how an ILU factorization may be easily computed in sparse skyline storage format, as opposed to traditional row-by-row schemes. This organization of the factorization has many advantages, including its amenability...

متن کامل

Enhancing Performance and Robustness of ILU Preconditioners by Blocking and Selective Transposition

Incomplete factorization is one of the most effective general-purpose preconditioning methods for Krylov subspace solvers for large sparse systems of linear equations. Two techniques for enhancing the robustness and performance of incomplete LU factorization for sparse unsymmetric systems are described. A block incomplete factorization algorithm based on the Crout variation of LU factorization ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2013