Molecular detection of a novel human influenza (H1N1) of pandemic potential by conventional and real-time quantitative RT-PCR assays.
نویسندگان
چکیده
BACKGROUND Influenza A viruses are medically important viral pathogens that cause significant mortality and morbidity throughout the world. The recent emergence of a novel human influenza A virus (H1N1) poses a serious health threat. Molecular tests for rapid detection of this virus are urgently needed. METHODS We developed a conventional 1-step RT-PCR assay and a 1-step quantitative real-time RT-PCR assay to detect the novel H1N1 virus, but not the seasonal H1N1 viruses. We also developed an additional real-time RT-PCR that can discriminate the novel H1N1 from other swine and human H1 subtype viruses. RESULTS All of the assays had detection limits for the positive control in the range of 1.0 x 10(-4) to 2.0 x 10(-3) of the median tissue culture infective dose. Assay specificities were high, and for the conventional and real-time assays, all negative control samples were negative, including 7 human seasonal H1N1 viruses, 1 human H2N2 virus, 2 human seasonal H3N2 viruses, 1 human H5N1 virus, 7 avian influenza viruses (HA subtypes 4, 5, 7, 8, 9, and 10), and 48 nasopharyngeal aspirates (NPAs) from patients with noninfluenza respiratory diseases; for the assay that discriminates the novel H1N1 from other swine and human H1 subtype viruses, all negative controls were also negative, including 20 control NPAs, 2 seasonal human H1N1 viruses, 2 seasonal human H3N2 viruses, and 2 human H5N1 viruses. CONCLUSIONS These assays appear useful for the rapid diagnosis of cases with the novel H1N1 virus, thereby allowing better pandemic preparedness.
منابع مشابه
Detection of Seasonal Influenza H1N1 and H3N2 Viruses using RT-PCR Assay during 2009 Flu Pandemic in Golestan Province
Abstract Background and Objective: The emergence of a novel H1N1influenza A virus of animal origin with transmissibility from human to human poses pandemic concern. Current subtypes of Seasonal influenza A viruses spread in human are influenza A H1N1 influenza A H3N2 and influenza type B viruses. The aim of this study was to determine current strains of the H3N2 and new H1N1 subtypes of influe...
متن کاملComparison of molecular assays for the rapid detection and simultaneous subtype differentiation of the pandemic influenza A (H1N1) 2009 virus.
In April 2009, the H1N1 pandemic influenza virus emerged as a novel influenza virus. The aim of this study was to compare the performances of several molecular assays, including conventional reverse transcription polymerase chain reaction (RT-PCR), two real-time reverse transcription (rRT)-PCRs, and two multiplex RTPCRs. A total of 381 clinical specimens were collected from patients (223 men an...
متن کاملDuplex real-time reverse transcriptase PCR assays for rapid detection and identification of pandemic (H1N1) 2009 and seasonal influenza A/H1, A/H3, and B viruses.
Reports of a novel influenza virus type A (H1N1), now designated by the World Health Organization as pandemic (H1N1) 2009, emerged from the United States and Mexico in April 2009. The management of the pandemic in Australia required rapid and reliable testing of large numbers of specimens for the novel influenza strain and differentiation from seasonal influenza strains. A real-time reverse tra...
متن کاملRapid detection of reassortment of pandemic H1N1/2009 influenza virus.
BACKGROUND Influenza viruses can generate novel reassortants in coinfected cells. The global circulation and occasional introductions of pandemic H1N1/2009 virus in humans and in pigs, respectively, may allow this virus to reassort with other influenza viruses. These possible reassortment events might alter virulence and/or transmissibility of the new reassortants. Investigations to detect such...
متن کاملRapid detection of the pandemic 2009 H1N1 virus M gene by real‐time and gel‐based RT‐PCR assays
BACKGROUND Since the first pandemic 2009 H1N1 (pH1N1) virus was isolated from humans, it has also been detected in other mammalian (pigs, cats, dogs, ferrets) and avian (turkey) species, most likely because of cross-species transmission from humans. The pH1N1 contains six genes derived from swine influenza viruses (SIVs) currently circulating in North America of human- (PB1), avian- (PB2, PA), ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical chemistry
دوره 55 8 شماره
صفحات -
تاریخ انتشار 2009