Toll pathway is required for wound-induced expression of barrier repair genes in the Drosophila epidermis.
نویسندگان
چکیده
The epidermis serves as a protective barrier in animals. After epidermal injury, barrier repair requires activation of many wound response genes in epidermal cells surrounding wound sites. Two such genes in Drosophila encode the enzymes dopa decarboxylase (Ddc) and tyrosine hydroxylase (ple). In this paper we explore the involvement of the Toll/NF-κB pathway in the localized activation of wound repair genes around epidermal breaks. Robust activation of wound-induced transcription from ple and Ddc requires Toll pathway components ranging from the extracellular ligand Spätzle to the Dif transcription factor. Epistasis experiments indicate a requirement for Spätzle ligand downstream of hydrogen peroxide and protease function, both of which are known activators of wound-induced transcription. The localized activation of Toll a few cell diameters from wound edges is reminiscent of local activation of Toll in early embryonic ventral hypoderm, consistent with the hypothesis that the dorsal-ventral patterning function of Toll arose from the evolutionary cooption of a morphogen-responsive function in wound repair. Furthermore, the combinatorial activity of Toll and other signaling pathways in activating epidermal barrier repair genes can help explain why developmental activation of the Toll, ERK, or JNK pathways alone fail to activate wound repair loci.
منابع مشابه
An epidermal barrier wound repair pathway in Drosophila is mediated by grainy head.
We used wounded Drosophila embryos to define an evolutionarily conserved pathway for repairing the epidermal surface barrier. This pathway includes a wound response enhancer from the Ddc gene that requires grainy head (grh) function and binding sites for the Grh transcription factor. At the signaling level, tyrosine kinase and extracellular signal-regulated kinase (ERK) activities are induced i...
متن کاملThe Toll/NF-κB signaling pathway is required for epidermal wound repair in Drosophila.
The Toll/NF-κB pathway, first identified in studies of dorsal-ventral polarity in the early Drosophila embryo, is well known for its role in the innate immune response. Here, we reveal that the Toll/NF-κB pathway is essential for wound closure in late Drosophila embryos. Toll mutants and Dif dorsal (NF-κB) double mutants are unable to repair epidermal gaps. Dorsal is activated on wounding, and ...
متن کاملSerine Proteolytic Pathway Activation Reveals an Expanded Ensemble of Wound Response Genes in Drosophila
After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embr...
متن کاملToll-like receptor 3 activation is required for normal skin barrier repair following UV damage
UV damage to the skin leads to the release of noncoding RNA (ncRNA) from necrotic keratinocytes that activates Toll-like receptor 3 (TLR3). This release of ncRNA triggers inflammation in the skin following UV damage. Recently, TLR3 activation was also shown to aid wound repair and increase the expression of genes associated with permeability barrier repair. Here, we sought to test whether skin ...
متن کاملPlatelet-rich plasma and platelet-derived lipid factors induce different and similar gene expression responses for selected genes related to wound healing in rat dermal wound environment
Although platelet-rich plasma (PRP) is the plasma fraction that contains higher levels of platelet-sequestered proteins such as growth factors and chemokines, it is also abundant in bioactive lipids whose role in wound healing has not been well characterized. This study provides a preliminary evaluation for the effect of the lipid component of PRP on selected genes related to wound healing. Spr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 13 شماره
صفحات -
تاریخ انتشار 2017