On the upper bound in Varadhan’s Lemma

نویسندگان

  • H. M. Jansen
  • Michel Mandjes
  • Koen De Turck
  • S Wittevrongel
  • M. R. H. Mandjes
  • K. De Turck
  • S. Wittevrongel
چکیده

In this paper, we generalize the upper bound in Varadhan’s Lemma. The standard formulation of Varadhan’s Lemma contains two important elements, namely an upper semicontinuous integrand and a rate function with compact sublevel sets. However, motivated by results from queueing theory, in this paper we do not assume that rate functions have compact sublevel sets. Moreover, we drop the assumption that the integrand is upper semicontinuous and replace it by a weaker condition. We prove that the upper bound in Varadhan’s Lemma still holds under these weaker conditions. Additionally, we show that only measurability of the integrand is required when the rate function is continuous.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane

Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...

متن کامل

Joint Density for the Local times of Continuous-time Markov Chains: Extended Version

We investigate the local times of a continuous-time Markov chain on an arbitrary discrete state space. For fixed finite range of the Markov chain, we derive an explicit formula for the joint density of all local times on the range, at any fixed time. We use standard tools from the theory of stochastic processes and finite-dimensional complex calculus. We apply this formula in the following dire...

متن کامل

Joint Density for the Local times of Continuous-time Markov Chains by David Brydges,1 Remco

We investigate the local times of a continuous-time Markov chain on an arbitrary discrete state space. For fixed finite range of the Markov chain, we derive an explicit formula for the joint density of all local times on the range, at any fixed time. We use standard tools from the theory of stochastic processes and finite-dimensional complex calculus. We apply this formula in the following dire...

متن کامل

Joint Density for the Local times of Continuous-time Markov Chains

We investigate the local times of a continuous-time Markov chain on an arbitrary discrete state space. For fixed finite range of the Markov chain, we derive an explicit formula for the joint density of all local times on the range, at any fixed time. We use standard tools from the theory of stochastic processes and finite-dimensional complex calculus. We apply this formula in the following dire...

متن کامل

An Upper Bound on the First Zagreb Index in Trees

In this paper we give sharp upper bounds on the Zagreb indices and characterize all trees achieving equality in these bounds. Also, we give lower bound on first Zagreb coindex of trees.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017