A Bibenzyl from Dendrobium ellipsophyllum inhibits epithelial-to-mesenchymal transition and sensitizes lung cancer cells to anoikis.
نویسندگان
چکیده
BACKGROUND Anti-metastasis therapy may become the potential means of improving survival of cancer patients. As the ability of cancer cells to change phenotype from epithelial to mesenchymal has been recognized as an important hallmark of cancer metastasis, this study provides information regarding the effect of a bibenzyl, namely 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl (TDB), isolated from Dendrobium ellipsophyllum, in inhibiting epithelial-to-mesenchymal transition (EMT) and sensitization of lung cancer cells to anoikis. MATERIALS AND METHODS Human lung cancer H292 cells were treated with non-cytotoxic doses of TDB for 24 h prior to evaluation of anoikis and anchorage-independent growth. The proteins relevant to EMT and anoikis resistance were examined in TDB-treated H292 cells via western blot analysis. RESULTS A significant increase in apoptosis induced by cell detachment was found in TDB-treated H292 cells. The formation of tumor in anchorage-independent growth assay was found to be dramatically reduced in response to the compound. Furthermore, western blot analysis of proteins involved in EMT revealed that treatment with TDB resulted in the increase of E-cadherin and the decrease of vimentin and transcription factor SNAIL, indicating EMT suppression. Concomitantly with EMT inhibition, the activity of pro-survival pathways, including activated protein kinase B (pAKT) and activated extracellular signal-regulated kinase (pERK), were found to be significantly reduced. CONCLUSION Because EMT, anoikis resistance and anchorage-independent growth are among important factors facilitating cancer metastasis, TDB shows potential to be developed as an anti-metastasis agent.
منابع مشابه
Cytotoxic and anti-metastatic activities of phenolic compounds from Dendrobium ellipsophyllum.
BACKGROUND/AIM Phenolic compounds isolated from Dendrobium ellipsophyllum Tang & Wang (Orchidaceae) have been shown to possess potential pharmacological activity; however, their anticancer as well as anti-metastasis activities are largely unknown. The aim of the present study was to isolate active compounds from D. ellipsophyllum and to explore the possible effects of phenolic compounds isolate...
متن کاملGigantol Inhibits Epithelial to Mesenchymal Process in Human Lung Cancer Cells
Lung cancer remains a leading public health problem as evidenced by its increasing death rate. The main cause of death in lung cancer patients is cancer metastasis. The metastatic behavior of lung cancer cells becomes enhanced when cancer cells undergo epithelial to mesenchymal transition (EMT). Gigantol, a bibenzyl compound extracted from the Thai orchid, Dendrobium draconis, has been shown to...
متن کاملEpithelial to mesenchymal transition concept in Cancer: Review article
Owing to this fact that most of the mortalities in cancers are as a result of metastasis, study on the involved pathways in metastasis including Epithelial to mesenchymal transition (EMT) would be so critical and important. Up to date, several extensive studies have been carried out to determine the correlation between EMT and cancer and their results have shown that the EMT plays pivotal role ...
متن کاملEpithelial-mesenchymal transition mediates anoikis resistance and enhances invasion in pleural effusion-derived human lung cancer cells
Epithelial-mesenchymal transition (EMT) is implicated in cancer pathological processes, particularly cancer invasion and metastasis. The present study demonstrated that EMT was critical for the metastasic potential of lung cancer cells isolated from a patient. P1 primary lung cancer cells were found to exhibit increased anoikis resistance compared with established A549, H23 and H460 lung cancer...
متن کاملAnalysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1
Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anticancer research
دوره 34 4 شماره
صفحات -
تاریخ انتشار 2014