A Probabilistic Analysis of Marker-Passing Techniques for Plan-Recognition

نویسندگان

  • Glenn Carroll
  • Eugene Charniak
چکیده

Useless paths are a chronic problem for marker-passing techniques. We use a prob­ abilistic analysis to justify a method for quickly identifying and rejecting useless paths. Using the same analysis, we identify key conditions and assumptions necessary for marker-passing to perform well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Symbolic-Probabilistic Plan Recognizer : Initial steps

It is important for agents to model other agents’ unobserved plans and goals, based on their observable actions, a process known as plan recognition. Plan recognition often takes the form of matching observations of an agent’s actions to a planlibrary, a model of possible plans selected by the agent. In this paper, we present efficient algorithms that handle a number of key capabilities implied...

متن کامل

Probabilistic State-Dependent Grammars for Plan Recognition

Techniques for plan recognition under uncertainty require a stochastic model of the plangeneration process. We introduce probabilistic state-dependent grammars (PSDGs) to represent an agent’s plan-generation process. The PSDG language model extends probabilistic contextfree grammars (PCFGs) by allowing production probabilities to depend on an explicit model of the planning agent’s internal and ...

متن کامل

A Probabilistic Approach to Marker Propagation

Potential ly, the advantages of marker-passing over local connectionist techniques for associa­ t ive inference are (1) the abi l i ty to differen­ t iate variable bindings, and (2) reduction in the search space and/or number of processing elements. However, the latter advantage has mostly been realized at the expense of accu­ racy and predictabi l i ty. In this paper we con­ sider a class of a...

متن کامل

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

Partial Observability and Probabilistic Plan/Goal Recognition

Partial observability of the domain prevents the application of many plan recognition algorithms to real world problems. This paper presents a treatment for partial observability for a specific probabilistic plan recognition algorithm and an initial analysis of the runtime impact.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991