Gene organization around the phenylalanyl-transfer ribonucleic acid synthetase locus in Escherichia coli.

نویسنده

  • M M Comer
چکیده

The organization of seven genes located at about 38 min on the genetic map of Escherichia coli was examined; these genes included pheS and pheT, which code for the alpha and beta subunits of phenylalanyl-transfer ribonucleic acid synthetase, and thrS, the structural gene for threonyl-transfer ribonucleic acid synthetase. Deletion mutants were isolated from an F-prime-containing merodiploid strain and were characterized genetically. Seventeen different kinds of deletions extending into pheS of pheT were identified. These deletions unambiguously defined the gene order as aroD pps himA pheT pheS thrS pfkB. Mutants with deletions covering either pheS or pheT, but not both, were analyzed further by assay of phenylalanyl-transfer ribonucleic acid synthetase. The phenotype of the mutants with a deletion from pfkB through pheS was anomalous; although the pheT gene was apparently still present, its product, the beta subunit, was much reduced in activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pleiotropic phenotype of an Escherichia coli mutant lacking leucyl-, phenylalanyl-transfer ribonucleic acid-protein transferase.

A mutant of Escherichia coli that lacks leucyl-, phenylalanyl-transfer ribonucleic acid-protein transferase had diminished activities of L-phenylalanyl-transfer ribonucleic acid synthetase and tryptophanase, grew faster than its parent with aspartic acid as the sole nitrogen source, accumulated higher levels of enterochelin in the medium during iron limitation, and exhibited an abnormal morphol...

متن کامل

Interactions of Phenylalanyl Transfer Ribonucleic Acid Synthetase of Neurospora crassa with Valyl Transfer Ribonucleic Acid of Escherichia co&*

Since Phe-tRNA synthetase of Neurospora crassa reacts with tRNAV”’ of Escherichia coli to produce Phe-tRNAV&‘, the parameters that effect the reverse reaction were examined. Similarly, the interaction of Val-tRNA synthetase (E. coti) with Phe-tRNAVal and Val-tRNAVal (E. coli) was studied. Phe-tRNA synthetase (N. crassa) can catalyze the deacylation of both Phe-tRNAVa 1 (E. coli) and Val-tRNAV”’...

متن کامل

Interactions of Phenylalanyl Transfer Ribonucleic Acid Synthetase of Neurospora crassa with Valyl Transfer Ribonucleic Acid of Escherichia co&*

Since Phe-tRNA synthetase of Neurospora crassa reacts with tRNAV”’ of Escherichia coli to produce Phe-tRNAV&‘, the parameters that effect the reverse reaction were examined. Similarly, the interaction of Val-tRNA synthetase (E. coti) with Phe-tRNAVal and Val-tRNAVal (E. coli) was studied. Phe-tRNA synthetase (N. crassa) can catalyze the deacylation of both Phe-tRNAVa 1 (E. coli) and Val-tRNAV”’...

متن کامل

Interactions of phenylalanyl transfer ribonucleic acid synthetase of Neurospora crassa with valyl transfer ribonucleic acid of Escherichia coli.

Since Phe-tRNA synthetase of Neurospora crassa reacts with tRNAV”’ of Escherichia coli to produce Phe-tRNAV&‘, the parameters that effect the reverse reaction were examined. Similarly, the interaction of Val-tRNA synthetase (E. coti) with Phe-tRNAVal and Val-tRNAVal (E. coli) was studied. Phe-tRNA synthetase (N. crassa) can catalyze the deacylation of both Phe-tRNAVa 1 (E. coli) and Val-tRNAV”’...

متن کامل

The isolation and properties of phenylalanyl ribonucleic acid synthetase from Escherichia coli B.

Phenylalanyl ribonucleic acid synthetase has been isolated frcm Escherichia coli and is 93% pure as determined by analytical centrifugation and gel electrophoresis. The procedure is adaptable to large scale preparation. No other aminoacyl-RNA synthetases are present in the purified preparation. The molecular weight of the enzyme is 181,000, with an ~~0,~ of 8.6. Optimal reaction conditions have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 146 1  شماره 

صفحات  -

تاریخ انتشار 1981