A Discrete Adapted Hierarchical Basis Solver For Radial Basis Function Interpolation

نویسندگان

  • Julio Enrique Castrillón-Candás
  • Jun Li
  • Victor Eijkhout
چکیده

In this paper we develop a discrete Hierarchical Basis (HB) to efficiently solve the Radial Basis Function (RBF) interpolation problem with variable polynomial order. The HB forms an orthogonal set and is adapted to the kernel seed function and the placement of the interpolation nodes. Moreover, this basis is orthogonal to a set of polynomials up to a given order defined on the interpolating nodes. We are thus able to decouple the RBF interpolation problem for any order of the polynomial interpolation and solve it in two steps: (1) The polynomial orthogonal RBF interpolation problem is efficiently solved in the transformed HB basis with a GMRES iteration and a diagonal, or block SSOR preconditioner. (2) The residual is then projected onto an orthonormal polynomial basis. We apply our approach on several test cases to study its effectiveness, including an application to the Best Linear Unbiased Estimator regression problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of a Fuzzy Function by Using Radial Basis Functions Interpolation

In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...

متن کامل

A new trust-region algorithm based on radial basis function interpolation

Optimization using radial basis functions as an interpolation tool in trust-region (ORBIT), is a derivative-free framework based on fully linear models to solve unconstrained local optimization, especially when the function evaluations are computationally expensive. This algorithm stores the interpolation points and function values to using at subsequent iterations. Despite the comparatively ad...

متن کامل

An O (N log N) Fast Direct Solver for Partial Hierarchically Semi-Separable Matrices - With Application to Radial Basis Function Interpolation

This article describes a fast direct solver (i.e., not iterative) for partial hierarchically semiseparable systems. This solver requires a storage of O(N logN) and has a computational complexity of O(N logN) arithmetic operations. The numerical benchmarks presented illustrate the method in the context of interpolation using radial basis functions. The key ingredients behind this fast solver are...

متن کامل

Buckling of Doubly Clamped Nano-Actuators in General form Through Spectral Meshless Radial Point Interpolation (SMRPI)

The present paper is devoted to the development of a kind of spectral meshless radial point interpolation (SMRPI) technique in order to obtain a reliable approximate solution for buckling of nano-actuators subject to different nonlinear forces. To end this aim, a general type of the governing equation for nano-actuators, containing integro-differential terms and nonlinear forces is considered. ...

متن کامل

Hybrid evolutionary algorithm with Hermite radial basis function interpolants for computationally expensive adjoint solvers

In this paper, we present an evolutionary algorithm hybridized with a gradient-based optimization technique in the spirit of Lamarckian learning for efficient design optimization. In order to expedite gradient search, we employ local surrogate models that approximate the outputs of a computationally expensive Euler solver. Our focus is on the case when an adjoint Euler solver is available for e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1104.2504  شماره 

صفحات  -

تاریخ انتشار 2011