Transform domain characterization of Abelian codes

نویسندگان

  • B. Sundar Rajan
  • Mohammad Umar Siddiqi
چکیده

Abelian codes constitute a class of codes that includes cyclic codes as a special case. It is shown that the general class of abelian codes can be characterized in the transform domain using discrete Fourier transform (DFT) over finite fields with appropriate mixed radix Manuscript received July 31, 1991. B. S. Rajan is with the Electrical Engineering Department, Indian Institute of Technology, Delhi, New Delhi-110016, India. M. U. Siddiqi is with the Electrical Engineering Department, Indian Institute of Technology, Kanpur-208016, India. IEEE Log Number 9201541. number system as the indexing scheme for DFT coefficients. A simple transform domain description for dual codes of abelian codes is also obtained. Using this description the idempotent generator of the dual of a given abelian code can be easily obtained. Finally, it is shown that in the case of cyclic codes which can be considered as abelian codes also, one can work in smaller extension fields compared to the extension fields if they were considered as cyclic codes only.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fq-Linear Cyclic Codes over Fq: DFT Characterization

Codes over Fqm that form vector spaces over Fq are called Fq-linear codes over Fqm . Among these we consider only cyclic codes and call them Fq-linear cyclic codes (FqLC codes) over Fqm . This class of codes includes as special cases (i) group cyclic codes over elementary abelian groups (q = p, a prime), (ii) subspace subcodes of Reed-Solomon codes and (iii) linear cyclic codes over Fq (m=1). T...

متن کامل

Quantum Error-Correction Codes on Abelian Groups

We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.

متن کامل

Abelian codes over Galois rings closed under certain permutations

We study -length Abelian codes over Galois rings with characteristic , where and are relatively prime, having the additional structure of being closed under the following two permutations: i) permutation effected by multiplying the coordinates with a unit in the appropriate mixed-radix representation of the coordinate positions and ii) shifting the coordinates by positions. A code is -quasi-cyc...

متن کامل

Codes Closed under Arbitrary Abelian Group of Permutations

Algebraic structure of codes over Fq , closed under arbitrary abelian group G of permutations with exponent relatively prime to q, called G-invariant codes, is investigated using a transform domain approach. In particular, this general approach unveils algebraic structure of quasicyclic codes, abelian codes, cyclic codes, and quasi-abelian codes with restriction on G to appropriate special case...

متن کامل

Hermitian self-dual quasi-abelian codes

Quasi-abelian codes constitute an important class of linear codes containing theoretically and practically interesting codes such as quasi-cyclic codes, abelian codes, and cyclic codes. In particular, the sub-class consisting of 1-generator quasi-abelian codes contains large families of good codes. Based on the well-known decomposition of quasi-abelian codes, the characterization and enumeratio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 38  شماره 

صفحات  -

تاریخ انتشار 1992