Minimax Classifier for Uncertain Costs
نویسندگان
چکیده
Many studies on the cost-sensitive learning assumed that a unique cost matrix is known for a problem. However, this assumption may not hold for many real-world problems. For example, a classifier might need to be applied in several circumstances, each of which associates with a different cost matrix. Or, different human experts have different opinions about the costs for a given problem. Motivated by these facts, this study aims to seek the minimax classifier over multiple cost matrices. In summary, we theoretically proved that, no matter how many cost matrices are involved, the minimax problem can be tackled by solving a number of standard cost-sensitive problems and sub-problems that involve only two cost matrices. As a result, a general framework for achieving minimax classifier over multiple cost matrices is suggested and justified by preliminary empirical studies.
منابع مشابه
Optimal threshold estimation for binary classifiers using
Many bioinformatics algorithms can be understood as binary classifiers. They are usually compared using the area under the receiver operating characteristic ( ) curve. On the other hand, choosing the best threshold for practical use ROC is a complex task, due to uncertain and context-dependent skews in the abundance of positives in nature and in the yields/costs for correct/incorrect classifica...
متن کاملOptimal threshold estimation for binary classifiers using game
Many bioinformatics algorithms can be understood as binary classifiers. They are usually trained by maximizing the area under the receiver operating characteristic ( ) curve. On the other hand, choosing the best threshold for ROC practical use is a complex task, due to uncertain and context-dependent skews in the abundance of positives in nature and in the yields/costs for correct/incorrect cla...
متن کاملMinimax Regret Classifier for Imprecise Class Distributions
The design of a minimum risk classifier based on data usually stems from the stationarity assumption that the conditions during training and test are the same: the misclassification costs assumed during training must be in agreement with real costs, and the same statistical process must have generated both training and test data. Unfortunately, in real world applications, these assumptions may ...
متن کاملOptimal threshold estimation for binary classifiers using game theory
Many bioinformatics algorithms can be understood as binary classifiers. They are usually trained by maximizing the area under the receiver operating characteristic ( ROC) curve. On the other hand, choosing the best threshold for practical use is a complex task, due to uncertain and context-dependent skews in the abundance of positives in nature and in the yields/costs for correct/incorrect clas...
متن کاملAdversarial Cost-Sensitive Classification
In many classification settings, mistakes incur different application-dependent penalties based on the predicted and actual class labels. Costsensitive classifiers minimizing these penalties are needed. We propose a robust minimax approach for producing classifiers that directly minimize the cost of mistakes as a convex optimization problem. This is in contrast to previous methods that minimize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1205.0406 شماره
صفحات -
تاریخ انتشار 2012