Short-period mutations of per affect a double-time-dependent step in the Drosophila circadian clock
نویسندگان
چکیده
Circadian (24 hour) PERIOD (PER) protein oscillation is dependent on the double-time (dbt) gene, a casein kinase Ivarepsilon homolog [1-3]. Without dbt activity, hypophosphorylated PER proteins over-accumulate, indicating that dbt is required for PER phosphorylation and turnover [3,4]. There is evidence of a similar role for casein kinase Ivarepsilon in the mammalian circadian clock [5,6]. We have isolated a new dbt allele, dbt(ar), which causes arrhythmic locomotor activity in homozygous viable adults, as well as molecular arrhythmicity, with constitutively high levels of PER proteins, and low levels of TIMELESS (TIM) proteins. Short-period mutations of per, but not of tim, restore rhythmicity to dbt(ar) flies. This suppression is accompanied by a restoration of PER protein oscillations. Our results suggest that short-period per mutations, and mutations of dbt, affect the same molecular step that controls nuclear PER turnover. We conclude that, in wild-type flies, the previously defined PER'short domain' [7,8] may regulate the activity of DBT on PER.
منابع مشابه
Regulation of Copulation Duration by period and timeless in Drosophila melanogaster
The circadian clock involves several clock genes encoding interacting transcriptional regulators. Mutations in clock genes in Drosophila melanogaster, period (per), timeless (tim), Clock (Clk), and cycle (cyc), produce multiple phenotypes associated with physiology, behavior, development, and morphology. It is not clear whether these genes always work as clock components or may also act in some...
متن کاملNew short period mutations of the Drosophila clock gene per.
Earlier work has indicated that the period length of Drosophila circadian behavioral rhythms is dependent on the abundance of the period (per) gene product. Increased expression of this gene has been associated with period shortening for both the circadian eclosion (pupal hatching) rhythm and circadian locomotor activity rhythms of adult Drosophila. In this study it is shown that a wide variety...
متن کاملA clock gene, period, plays a key role in long-term memory formation in Drosophila.
The cAMP-responsive transcription factor, CREB, is required for formation of long-term memory (LTM) in Drosophila melanogaster and regulates transcription of a circadian clock gene, period (per). Involvement of CREB both in LTM and circadian rhythm raises the possibility that per also plays a role in LTM. Assaying the experience-dependent courtship inhibition in male flies as a measure for LTM,...
متن کاملPhosphorylation of PERIOD Is Influenced by Cycling Physical Associations of DOUBLE-TIME, PERIOD, and TIMELESS in the Drosophila Clock
The clock gene double-time (dbt) encodes an ortholog of casein kinase Iepsilon that promotes phosphorylation and turnover of the PERIOD protein. Whereas the period (per), timeless (tim), and dClock (dClk) genes of Drosophila each contribute cycling mRNA and protein to a circadian clock, dbt RNA and DBT protein are constitutively expressed. Robust circadian changes in DBT subcellular localizatio...
متن کاملDrosophila melanogaster deficient in protein kinase A manifests behavior-specific arrhythmia but normal clock function.
Drosophila melanogaster bearing mutations in the DCO gene, which encodes the major catalytic subunit of cAMP-dependent protein kinase (PKA), displays arrhythmic locomotor activity strongly suggesting a role for PKA in the circadian timing system. This arrhythmicity might result from a requirement for PKA activity in photic resetting pathways, the timekeeping mechanism itself, or downstream effe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 10 شماره
صفحات -
تاریخ انتشار 2000