A Method for Constrained Multiobjective Optimization Based on SQP Techniques

نویسندگان

  • Jörg Fliege
  • A. Ismael F. Vaz
چکیده

We propose a method for constrained and unconstrained nonlinear multiobjective optimization problems that is based on an SQP-type approach. The proposed algorithm maintains a list of nondominated points that is improved both for spread along the Pareto front and optimality by solving single-objective constrained optimization problems. These single-objective problems are derived as SQP problems based on the given nondominated points. Under appropriate differentiability assumptions we discuss convergence to local optimal Pareto points. We provide numerical results for a set of unconstrained and constrained multiobjective optimization problems in the form of performance and data profiles, where several performance metrics are used. The numerical results confirm the superiority of the proposed algorithm against a state-of-the-art multiobjective solver and a classical scalarization approach, both in the quality of the approximated Pareto front and in the computational effort necessary to compute the approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

Quasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization

Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.

متن کامل

A Second Derivative Sqp Method : Theoretical Issues

Sequential quadratic programming (SQP) methods form a class of highly efficient algorithms for solving nonlinearly constrained optimization problems. Although second derivative information may often be calculated, there is little practical theory that justifies exact-Hessian SQP methods. In particular, the resulting quadratic programming (QP) subproblems are often nonconvex, and thus finding th...

متن کامل

Second order sensitivity analysis for shape optimization of continuum structures

This study focuses on the optimization of the plane structure. Sequential quadratic programming (SQP) will be utilized, which is one of the most efficient methods for solving nonlinearly constrained optimization problems. A new formulation for the second order sensitivity analysis of the two-dimensional finite element will be developed. All the second order required derivatives will be calculat...

متن کامل

A Second Derivative Sqp Method with Imposed

Sequential quadratic programming (SQP) methods form a class of highly efficient algorithms for solving nonlinearly constrained optimization problems. Although second derivative information may often be calculated, there is little practical theory that justifies exact-Hessian SQP methods. In particular, the resulting quadratic programming (QP) subproblems are often nonconvex, and thus finding th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016