Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis.

نویسندگان

  • Gaoxiang Ouyang
  • Jing Li
  • Xianzeng Liu
  • Xiaoli Li
چکیده

Understanding the transition of brain activities towards an absence seizure, called pre-epileptic seizure, is a challenge. In this study, multiscale permutation entropy (MPE) is proposed to describe dynamical characteristics of electroencephalograph (EEG) recordings on different absence seizure states. The classification ability of the MPE measures using linear discriminant analysis is evaluated by a series of experiments. Compared to a traditional multiscale entropy method with 86.1% as its classification accuracy, the classification rate of MPE is 90.6%. Experimental results demonstrate there is a reduction of permutation entropy of EEG from the seizure-free state to the seizure state. Moreover, it is indicated that the dynamical characteristics of EEG data with MPE can identify the differences among seizure-free, pre-seizure and seizure states. This also supports the view that EEG has a detectable change prior to an absence seizure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring

OBJECTIVE Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural pop...

متن کامل

Assessment of Multiscale Information for Short Physiological Time Series

This paper presents a multiscale information measure of Electroencephalogram (EEG) for analysis with a short data length. A multiscale extension of permutation entropy (MPE) is capable of fully reflecting the dynamical characteristics of EEG across different temporal scales. However, MPE yields an imprecise estimation due to coarse-grained procedure at large scales. We present an improved MPE m...

متن کامل

Complexity Analysis of Alzheimer Disease EEG Data through Multiscale Permutation Entropy

The number of patients suffering from Alzheimer’s disease (AD) is rapidly increasing. A variety of sophisticated techniques have been proposed to early detect the precursors of AD to help predict the conversion from Mild Cognitive Impairment (MCI) to AD. The complexity of EEG signals is believed to face an average reduction during the course of the disease. This paper reports preliminary studie...

متن کامل

Differentiating Interictal and Ictal States in Childhood Absence Epilepsy through Permutation Rényi Entropy

Permutation entropy (PE) has been widely exploited to measure the complexity of the electroencephalogram (EEG), especially when complexity is linked to diagnostic information embedded in the EEG. Recently, the authors proposed a spatial-temporal analysis of the EEG recordings of absence epilepsy patients based on PE. The goal here is to improve the ability of PE in discriminating interictal sta...

متن کامل

Applying Improved Multiscale Fuzzy Entropy for Feature Extraction of MI-EEG

Electroencephalography (EEG) is considered the output of a brain and it is a bioelectrical signal with multiscale and nonlinear properties. Motor Imagery EEG (MI-EEG) not only has a close correlation with the human imagination and movement intention but also contains a large amount of physiological or disease information. As a result, it has been fully studied in the field of rehabilitation. To...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Epilepsy research

دوره 104 3  شماره 

صفحات  -

تاریخ انتشار 2013