24 Tribology of Diamond , Diamond - Like Carbon , and Related Films
نویسندگان
چکیده
Diamond, diamond-like carbon (DLC), and other related materials (i.e., carbon nitride and cubic boron nitride [CBN]) are some of the hardest materials known and offer several other outstanding properties, such as high mechanical strength, chemical inertness, and very attractive friction and wear properties, that make them good prospects for a wide range of tribological applications, including rolling and sliding bearings, machining, mechanical seals, biomedical implants, microelectromechanical systems (MEMS), etc. The dry sliding friction and wear coefficients of these materials are among the lowest recorded to date (Brookes and Brookes, 1991; Feng and Field, 1991; Field, 1992; Miyoshi, 1995; Erdemir, 2001a,b). In fact, if they were inexpensive and readily available, they would undoubtedly be the materials of choice for a wide range of applications. Besides their exceptional mechanical and tribological properties, most of these superhard materials offer broad optical transparency, high refractive index, wide bandgap, low or negative electron affinity, transparency to light from deep UV through visible to far infrared, excellent thermal conductivity, and extremely low thermal expansion. Briefly, these exceptional qualities make diamond, DLC, and other related materials ideal for numerous industrial applications in addition to tribology. Ali Erdemir Argonne National Laboratory
منابع مشابه
Effect of Catalyst on the Growth of Diamond-like Carbon by HFCVD
Diamond like carbon (DLC) film was grown by hot filament chemical vapor deposition (HFCVD)technique. In the present work, we investigated the quality of the DLC films groew on the substratesthat were coated with various metal nanocatalysts (Au and Ni). A combination of CH4/Ar/H2 rendersthe growth of carbon nanostructures technique (diamond like carbon). The utilized samples werecharacterized by...
متن کاملCryogenic vacuum tribology of diamond and diamond-like carbon films
Friction measurements have been performed on microcrystalline, ultrananocrystalline, and diamond-like carbon DLC films with natural diamond counterfaces in the temperature range of 8 K to room temperature. All films exhibit low friction 0.1 in air at room temperature. In ultrahigh vacuum, microcrystalline diamond quickly wears into a high friction state 0.6 , which is independent of temperature...
متن کاملMorphological Characterization of Combustion Deposited Diamond Crystals and Films
Single crystals and polycrystalline diamond films of several thicknesses were deposited using oxygen/acetylene combustion flame technique. The substrate used was pure polycrystalline molybdenum subjected to mechanical polishing. Quality and microstructural characteristic of diamond produced were investigated using X-Ray diffraction, Raman Spectroscopy, Scanning and Transmission Electron Microsc...
متن کاملIn-situ Quantitative Integrated Tribo-SPM Nano-Micro-Metrology
A novel quantitative nano+micro-tribometer with integrated SPM and optical microscope imaging has been developed to characterize numerous physical and mechanical properties of liquid and solid thin films and coatings, with in-situ monitoring their changes during micro and nano indentation, scratching, reciprocating, rotating and other tribology tests. Both the materials properties and surface t...
متن کاملThe Growth of Diamond-like Carbon Nano-Structures: Investigation of the Affecting Factors
Using DC-Plasma Enhanced Chemical Vapour Deposition (PECVD) system, the impact of pure Co onthe growth of diamond-like carbon (DLC) nano-structures were investigated. In this study, Acetylene(C2H2) was diluted in H2 and used as the reaction gas and Cobalt (Co) nano-particles were used asthe catalyst. The effect of preparing Co catalyst at temperatures of 240°C and 350°C and growthconditions was...
متن کامل