A Mechanized Translation from Higher-Order Logic to Set Theory

نویسندگان

  • Alexander Krauss
  • Andreas Schropp
چکیده

In order to make existing formalizations available for settheoretic developments, we present an automated translation of theories from Isabelle/HOL to Isabelle/ZF. This covers all fundamental primitives, particularly type classes. The translation produces LCF-style theorems that are checked by Isabelle’s inference kernel. Type checking is replaced by explicit reasoning about set membership.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translating Dependent Type Theory into Higher Order Logic

This paper describes a translation of the complex calculus of dependent type theory into the relatively simpler higher order logic originally introduced by Church. In particular, it shows how type dependency as found in Martin-LL of's Intuitionistic Type Theory can be simulated in the formulation of higher order logic mechanized by the HOL theorem-proving system. The outcome is a theorem prover...

متن کامل

Inductive Fixpoints in Higher Order Logic

We show that an analogue of the domain-theoretic least fixpoint operator can be defined in a purely set-theoretic framework. It can be formalized in classical higher order logic, serving as a solid foundation for proving termination of (possibly nested) recursive programs in a variety of mechanized proof systems.

متن کامل

Formalized Elliptic Curve Cryptography

Formalizing a mathematical theory is a necessary first step to proving the correctness of programs that refer to that theory in their specification. This paper demonstrates how the mathematical theory of elliptic curves and their application to cryptography can be formalized in higher order logic. This formal development is mechanized using the HOL4 theorem prover, resulting in a collection of ...

متن کامل

Mechanized Verification with Sharing

We consider software verification of imperative programs by theorem proving in higher-order separation logic. Of particular interest are the difficulties of encoding and reasoning about sharing and aliasing in pointer-based data structures. Both of these are difficulties for reasoning in separation logic because they rely, fundamentally, on non-separate heaps. We show how sharing can be achieve...

متن کامل

Beyond first order logic: From number of structures to structure of numbers: Part II

We study the history and recent developments in nonelementarymodel theory focusing on the framework of abstractelementary classes. We discuss the role of syntax and semanticsand the motivation to generalize first order model theory to nonelementaryframeworks and illuminate the study with concrete examplesof classes of models. This second part continues to study the question of catecoricitytrans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010