Model Predictive Control of Trailing Edge Flaps on a Wind Turbine Blade

نویسندگان

  • Damien Castaignet
  • Niels K. Poulsen
  • Thomas Buhl
  • Jens Jakob Wedel-Heinen
چکیده

Trailing Edge Flaps on wind turbine blades have been studied in order to achieve fatigue load reduction on the turbine components. We show in this paper how Model Predictive Control can be used to do frequency weighted control of the trailing edge flaps in order to reduce fatigue damage on the blade root. The design model is based on a modal model of the blade structure and a steady state aerodynamic model of the blade airfoils. Depending on the output filter, loads within different frequency range are decreased. A fine tuning of the Kalman filter and of the cost function allows to decrease significantly the blade root loads without damaging excessively the trailing edge flap actuators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal control for load alleviation in wind turbines

Nowadays, trailing edge flaps on wind turbine blades are considered to reduce loading stresses in wind turbine components. In this paper, an optimal control synthesis methodology for the design of gust load controllers for large wind turbine blades is proposed. We discuss a control synthesis approach that minimises the power expenditure of the actuated trailing edge flap, while at the same time...

متن کامل

Simulating Cooling Injection Effect of Trailing Edge of Gas Turbine Blade on Surface Mach Number Distribution of Blade

In this research, a gas turbine blade cascade was investigated. Flow analysis around the blade was conducted using RSM and RNG.K-ε turbulence modeling and it is simulated by Fluent software. The results were considered for the cases as Mach number loss at the trailing edge of blade caused by vortexes that were generated at the end of blade. Effect of cooling flow through the trailing edge on th...

متن کامل

Design of a Wind Tunnel Scale Model of an Adaptive Wind Turbine Blade for Active Aerodynamic Load Control Experiments

Within wind energy research there is a drive towards the development of a “smart rotor”; a rotor of which the loading can be measured and controlled through the application of a sensor system, a control system and an aerodynamic device. Most promising solutions from an aerodynamic point of view are trailing edge flaps, either hinged or continuously deformable. An experiment was considered neces...

متن کامل

A Comparison of Smart Rotor Control Approaches Using Trailing Edge Flaps and Individual Pitch Control

Modern wind turbines have been steadily increasing in size, and have now become very large, with recent models boasting rotor diameters greater than 120 m. Reducing the loads experienced by the wind turbine rotor blades is one means of lowering the cost of energy of wind turbines. Wind turbines are subjected to significant and rapid fluctuating loads, which arise from a variety of sources inclu...

متن کامل

Individual Blade Pitch and Camber Control for Vertical Axis Wind Turbines

In this paper we present a dynamical systems model and control algorithms for a small, vertical axis wind turbine (VAWT). The wind turbine is designed for the domestic market, including regions without very favorable wind conditions. Good performance at low wind speeds is an important requirement for developing an economically viable, suburban VAWT. The performance of a VAWT can be greatly enha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011