Hybrid spam filtering for mobile communication
نویسندگان
چکیده
Spam messages are an increasing threat to mobile communication. Several mitigation techniques have been proposed, including white and black listing, challenge-response and content-based filtering. However, none are perfect and it makes sense to use a combination rather than just one. We propose an anti-spam framework based on the hybrid of contentbased filtering and challenge-response. A message, that has been classified as uncertain through content-based filtering, is checked further by sending a challenge to the message sender. An automated spam generator is unlikely to send back a correct response, in which case, the message is classified as spam. Our simulation results show the trade-off between the accuracy of anti-spam classifiers and the incurring traffic overhead, and demonstrate that our hybrid framework is capable of achieving high accuracy regardless of the content-based filtering algorithm being used. a 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
An Effective Model for SMS Spam Detection Using Content-based Features and Averaged Neural Network
In recent years, there has been considerable interest among people to use short message service (SMS) as one of the essential and straightforward communications services on mobile devices. The increased popularity of this service also increased the number of mobile devices attacks such as SMS spam messages. SMS spam messages constitute a real problem to mobile subscribers; this worries telecomm...
متن کاملTowards SMS Spam Filtering: Results under a New Dataset
The growth of mobile phone users has lead to a dramatic increasing of SMS spam messages. Recent reports clearly indicate that the volume of mobile phone spam is dramatically increasing year by year. In practice, fighting such plague is difficult by several factors, including the lower rate of SMS that has allowed many users and service providers to ignore the issue, and the limited availability...
متن کاملChoosing the best classifier for the job: Mobile Filtering for the South African Context
Short messages to cell phones (SMSs) have become the most popular means of communication on digital fronts, especially in Africa and South Africa in particular. This inspires the abuse of such systems by advertisers through the distribution of SPAM. It has therefore become necessary to incorporate a filtering system similar to e-mail classification on these low resource devices. In this article...
متن کاملSymbiotic filtering for spam email detection
This paper presents a novel spam filtering technique called Symbiotic Filtering (SF) that aggregates distinct local filters from several users to improve the overall performance of spam detection. SF is an hybrid approach combining some features from both Collaborative (CF) and Content-Based Filtering (CBF). It allows for the use of social networks to personalize and tailor the set of filters t...
متن کاملThe Contribution of Stylistic Information to Content-based Mobile Spam Filtering
Content-based approaches to detecting mobile spam to date have focused mainly on analyzing the topical aspect of a SMS message (what it is about) but not on the stylistic aspect (how it is written). In this paper, as a preliminary step, we investigate the utility of commonly used stylistic features based on shallow linguistic analysis for learning mobile spam filters. Experimental results show ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Security
دوره 29 شماره
صفحات -
تاریخ انتشار 2010