Evolutionary kernel density regression

نویسندگان

  • Oliver Kramer
  • Fabian Gieseke
چکیده

The Nadaraya–Watson estimator, also known as kernel regression, is a density-based regression technique. It weights output values with the relative densities in input space. The density is measured with kernel functions that depend on bandwidth parameters. In this work we present an evolutionary bandwidth optimizer for kernel regression. The approach is based on a robust loss function, leave-one-out cross-validation, and the CMSA-ES as optimization engine. A variant with local parameterized Nadaraya–Watson models enhances the approach, and allows the adaptation of the model to local data space characteristics. The unsupervised counterpart of kernel regression is an approach to learn principal manifolds. The learning problem of unsupervised kernel regression (UKR) is based on optimizing the latent variables, which is a multimodal problem with many local optima. We propose an evolutionary framework for optimization of UKR based on scaling of initial local linear embedding solutions, and minimization of the cross-validation error. Both methods are analyzed experimentally. ! 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Adaptive Nadaraya-watson Kernel Regression Estimators

Nonparametric kernel estimators are widely used in many research areas of statistics. An important nonparametric kernel estimator of a regression function is the Nadaraya-Watson kernel regression estimator which is often obtained by using a fixed bandwidth. However, the adaptive kernel estimators with varying bandwidths are specially used to estimate density of the long-tailed and multi-mod dis...

متن کامل

A Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator

In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...

متن کامل

Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density

Error density estimation in a nonparametric functional regression model with functional predictor and scalar response is considered. The unknown error density is approximated by a mixture of Gaussian densities with means being the individual residuals, and variance as a constant parameter. This proposed mixture error density has a form of a kernel density estimator of residuals, where the regre...

متن کامل

An orthogonal forward regression technique for sparse kernel density estimation

Using the classical Parzen window (PW) estimate as the desired response, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density (SKD) estimates. The proposed algorithm incrementally minimises a leave-one-out test score to select a sparse kernel model, and a local regularisation method is i...

متن کامل

Kernel Regression and Backpropagation Training With Noise

One method proposed for improving the generalization capability of a feedforward network trained with the backpropagation algorithm is to use artificial training vectors which are obtained by adding noise to the original training vectors. We discuss the connection of such backpropagation training with noise to kernel density and kernel regression estimation. We compare by simulated examples (1)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2012