Acceleration of ultra - thin electron layer . Analytical treatment compared with 1 D - PIC simulation

نویسندگان

  • Meng Wen
  • Hui-Chun Wu
  • Jürgen Meyer-ter-Vehn
چکیده

In this paper, we apply an analytical model [V.V. Kulagin et al., Phys. Plasmas 14,113101 (2007)] to describe the acceleration of an ultra-thin electron layer by a schematic single-cycle laser pulse and compare with one-dimensional particle-in-cell (1D-PIC) simulations. This is in the context of creating a relativistic mirror for coherent backscattering and supplements two related papers in this EPJD volume. The model is shown to reproduce the 1D-PIC results almost quantitatively for the short time of a few laser periods sufficient for the backscattering of ultra-short probe pulses. PACS. 41.75.Jv Laser-driven acceleration, – 52.59.-f Intense particle beams and radiation sources in physics of plasmas, – 29.25.-t Particle sources and targets

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coherent Thomson backscattering from laser-driven relativistic ultra-thin electron layers

The generation of laser-driven dense relativistic electron layers from ultra-thin foils and their use for coherent Thomson backscattering is discussed, applying analytic theory and one-dimensional particlein-cell simulation. The blow-out regime is explored in which all foil electrons are separated from ions by direct laser action. The electrons follow the light wave close to its leading front. ...

متن کامل

شبیه‌سازی ذره‌ای شتاب دادن الکترون‌ها در پلاسمای کم چگال

One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...

متن کامل

The reflectivity of relativistic ultra-thin electron layers

The coherent reflectivity of a dense, relativistic, ultra-thin electron layer is derived analytically for an obliquely incident probe beam. Results are obtained by two-fold Lorentz transformation. For the analytical treatment, a plane uniform electron layer is considered. All electrons move with uniform velocity under an angle to the normal direction of the plane; such electron motion correspon...

متن کامل

Sustained Acceleration of Over-dense Plasmas by Colliding Laser Pulses

We review recent PIC simulation results which show that double-sided irradiaton of a thin overdense plasma slab by ultra-intense laser pulses from both sides can lead to sustained comoving acceleration of surface electrons to energies much higher than the conventional ponderomotive limit. The acceleration stops only when the electrons drift transversely out of the laser beam. We show results of...

متن کامل

Sub-TeV proton beam generation by ultra-intense laser irradiation of foil-and-gas target

A two-phase proton acceleration scheme using an ultra-intense laser pulse irradiating a proton foil with a tenuous heavier-ion plasma behind it is presented. The foil electrons are compressed and pushed out as a thin dense layer by the radiation pressure and propagate in the plasma behind at near the light speed. The protons are in turn accelerated by the resulting space-charge field and also e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008