BOUNDS ON FEWNOMIAL EXPONENTIAL SUMS OVER Z p TODD

نویسنده

  • CHRISTOPHER PINNER
چکیده

We obtain a number of new bounds for exponential sums of the type S(χ, f) = Pp−1 x=1 χ(x)ep(f(x)), with p a prime, f(x) = Pr i=1 aix ki , ai, ki ∈ Z, 1 ≤ i ≤ r and χ a multiplicative character (mod p). The bounds refine earlier Mordell-type estimates and are particularly effective for polynomials in which a certain number of the ki have a large gcd with p − 1. For instance, if f(x) = Pm i=1 aix ki + g(xd) with d|(p − 1) then |S(χ, f)| ≤ p (k1 · · · km) 1 m2 /d 1 2m . If f(x) = axk + h(xd) with d|(p− 1) and (k, p− 1) = 1 then |S(χ, f)| ≤ p/ √ d, and if f(x) = axk + bx−k + h(xd) with d|(p − 1) and (k, p− 1) = 1 then |S(χ, f)| ≤ p/ √ d+ √ 2p3/4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on Fewnomial Exponential Sums Over

We obtain a number of new bounds for exponential sums of the type S(χ, f) = ∑p−1 x=1 χ(x)ep(f(x)), with p a prime, f(x) = ∑r i=1 aix ki , ai, ki ∈ Z, 1 ≤ i ≤ r and χ a multiplicative character (mod p). The bounds refine earlier Mordell-type estimates and are particularly effective for polynomials in which a certain number of the ki have a large gcd with p − 1. For instance, if f(x) = ∑m i=1 aix...

متن کامل

A-Discriminants for Complex Exponents and Counting Real Isotopy Types

We take a first step toward extending the theory of A-discriminants, and Kapranov’s parametrization of A-discriminant varieties [Kap91], to a broader family of functions including polynomials as a very special case. As an application, we prove a quadratic upper bound on the number of isotopy types of real zero sets of certain n-variate exponential sums, in a setting where the best previous boun...

متن کامل

A Survey on Pure and Mixed Exponential Sums modulo Prime Powers

where p is a prime power, epm(·) is the additive character epm(x) = e m and χ is a multiplicative character (mod p). The goals of this paper are threefold; first, to point out the similarity between exponential sums over finite fields and exponential sums over residue class rings (mod p) with m ≥ 2; second, to show how mixed exponential sums can be reduced to pure exponential sums when m ≥ 2 an...

متن کامل

Bounds on Exponential Sums and the Polynomial Waring Problem Mod

Estimates are given for the exponential sum ∑p x=1 exp(2πif(x)/p), p a prime and f a nonzero integer polynomial, of interest in cases where the Weil bound is worse than trivial. The results extend those of Konyagin for monomials to a general polynomial. Such bounds readily yield estimates for the corresponding polynomial Waring problem mod p, namely the smallest γ such that f(x1)+ . . .+f(xγ) ≡...

متن کامل

Upper Bounds on a Two-term Exponential Sum

We obtain upper bounds for mixed exponential sums of the type S(χ, f, pm) = ∑pm x=1 χ(x)epm (ax n+bx) where pm is a prime power with m ≥ 2 and χ is a multiplicative character (mod pm). If χ is primitive or p (a, b) then we obtain |S(χ, f, pm)| ≤ 2np 2 3 . If χ is of conductor p and p (a, b) then we get the stronger bound |S(χ, f, pm)| ≤ npm/2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010