Linearly Implicit Discrete Event Methods for Stiff Ode’s
نویسندگان
چکیده
This paper introduces two new numerical methods for integration of stiff ordinary differential equations. Following the idea of quantization based integration, i.e., replacing the time discretization by state quantization, the new methods perform first and second order backward approximations allowing to simulate stiff systems. It is shown that the new algorithms satisfy the same theoretical properties of previous quantization–based integration methods. The translation of the new algorithms into a discrete event (DEVS) specification and its implementation in a DEVS simulation tool is discussed. The efficience of the methods is illustrated comparing the simulation of two examples with the classic methods implemented by Matlab/Simulink. Keywords— Stiff System Simulation, Quantization Based Integration, DEVS
منابع مشابه
Linearly Implicit Discrete Event Methods for Stiff ODEs. Part II: Implementation
This second part deals with the main practical issues of the linearly implicit quantization based integration (QBI) methods defined in the companion paper. The translation of the new algorithms into a discrete event (DEVS) specification and its implementation in a DEVS simulation tool is discussed. The efficience of the methods is illustrated comparing the simulation of two examples with the cl...
متن کاملLinearly Implicit Discrete Event Methods for Stiff ODEs. Part I: Theory
This paper introduces two new numerical methods for integration of stiff ordinary differential equations. Following the idea of quantization based integration, i.e., replacing the time discretization by state quantization, the new methods perform first and second order backward approximations allowing to simulate stiff systems. It is shown that the new algorithms satisfy the same theoretical pr...
متن کاملA Class of Linearly Implicit Numerical Methods for Solving Stiff Ordinary Differential Equations
We introduce ABC-schemes, a new class of linearly implicit one-step methods for numerical integration of stiff ordinary differential equation systems. Formulas of ABC-schemes invoke the Jacobian of differential system similary to the methods of Rosenbrock type, but unlike the latter they include also the square of the Jacobian matrix.
متن کاملLinearly implicit quantization-based integration methods for stiff ordinary differential equations
In this paper, new integration methods for stiff ordinary differential equations (ODEs) are developed. Following the idea of quantization–based integration (QBI), i.e., replacing the time discretization by state quantization, the proposed algorithms generalize the idea of linearly implicit algorithms. Also, the implementation of the new algorithms in a DEVS simulation tool is discussed. The eff...
متن کاملOn second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کامل