Synaptogenesis via dendritic filopodia in developing hippocampal area CA1.

نویسندگان

  • J C Fiala
  • M Feinberg
  • V Popov
  • K M Harris
چکیده

To determine the role of dendritic filopodia in the genesis of excitatory synaptic contacts and dendritic spines in hippocampal area CA1, serial section electron microscopy and three-dimensional analysis of 16 volumes of neuropil from nine male rat pups, aged postnatal day 1 (P1) through P12, were performed. The analysis revealed that numerous dendritic filopodia formed asymmetric synaptic contacts with axons and with filopodia extending from axons, especially during the first postnatal week. At P1, 22 +/- 5.5% of synapses occurred on dendritic filopodia, with 19 +/- 5.9% on filopodia at P4, 20 +/- 8.0% at P6, decreasing to 7.2 +/- 4.7% at P12 (p < 0.02). Synapses were found at the base and along the entire length of filopodia, with many filopodia exhibiting multiple synaptic contacts. In all, 162 completely traceable dendritic filopodia received 255 asymmetric synaptic contacts. These synapses were found at all parts of filopodia with equal frequency, usually occurring on fusiform swellings of the diameter. Most synaptic contacts (53 +/- 11%) occurred directly on dendritic shafts during the first postnatal week. A smaller but still substantial portion (32 +/- 12%) of synapses were on shafts at P12 (p < 0.036). There was a highly significant (p < 0.0002) increase in the proportion of dendritic spine synapses with age, rising from just 4.9 +/- 4.3% at P1 to 37 +/- 14% at P12. The concurrence of primarily shaft and filopodial synapses in the first postnatal week suggests that filopodia recruit shaft synapses that later give rise to spines through a process of outgrowth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP.

Enlargement of dendritic spines and synapses correlates with enhanced synaptic strength during long-term potentiation (LTP), especially in immature hippocampal neurons. Less clear is the nature of this structural synaptic plasticity on mature hippocampal neurons, and nothing is known about the structural plasticity of inhibitory synapses during LTP. Here the timing and extent of structural syna...

متن کامل

LTP enhances synaptogenesis in the developing hippocampus

In adult hippocampus, long-term potentiation (LTP) produces synapse enlargement while preventing the formation of new small dendritic spines. Here, we tested how LTP affects structural synaptic plasticity in hippocampal area CA1 of Long-Evans rats at postnatal day 15 (P15). P15 is an age of robust synaptogenesis when less than 35% of dendritic spines have formed. We hypothesized that LTP might ...

متن کامل

Synaptogenesis on mature hippocampal dendrites occurs via filopodia and immature spines during blocked synaptic transmission.

During development, dendritic spines emerge as stubby protrusions from single synapses on dendritic shafts or from retracting filopodia, many of which have more than one synapse. These structures are rarely encountered in the mature brain. Recently, confocal and two-photon microscopy have revealed a proliferation of new filopodia-like protrusions in mature hippocampal slices, especially when sy...

متن کامل

Bidirectional Regulation of Hippocampal Mossy Fiber Filopodial Motility by Kainate Receptors A Two-Step Model of Synaptogenesis

The rapid motility of axonal filopodia and dendritic spines is prevalent throughout the developing CNS, although the function of this motility remains controversial. Using two-photon microscopy, we imaged hippocampal mossy fiber axons in slice cultures and discovered that filopodial extensions are highly motile. Axonal filopodial motility is actin based and is downregulated with development, al...

متن کامل

Filopodia, Spines, and the Generation of Synaptic Diversity

Stanford University School of Medicine lar cells within an area, as do dendritic arbors. There Stanford, California 94305 must be an interaction between the intrinsic morphogenetic program specific to a given cell type and epigenetic influences. Whatever the mechanisms behind this interCentral nervous systems are bewilderingly complex, action may be, it is clear that patterns of activity contro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 21  شماره 

صفحات  -

تاریخ انتشار 1998