Naturalistic Driving Data for the Analysis of Car-following Models
نویسندگان
چکیده
................................................................................................................................... 7 INTRODUCTION .......................................................................................................................... 8 NATURALISTIC DRIVING DATA ............................................................................................. 8 Data Collection ........................................................................................................................... 8 Data Selection ............................................................................................................................. 9 Event Processing ......................................................................................................................... 9 Data Validation ......................................................................................................................... 11 Smoothing and Interpolating Data Elements ............................................................................ 12 Summary of the Data Reduction Process.................................................................................. 13 SUMMARY OF DATA ANALYZED ......................................................................................... 14 TRAFFIC SIMULATION CAR-FOLLOWING MODELS ........................................................ 16 Gaxis-Herman-Rothery (GHR) Model ..................................................................................... 16 Gipps Model.............................................................................................................................. 17 Intelligent Driver Model (IDM) ................................................................................................ 18 Rakha-Pasumarthy-Adjerid (RPA) Model ................................................................................ 18 PARAMETER CALIBRATION .................................................................................................. 20 Discrete Time Generation of Vehicle Trajectories ................................................................... 20 Parameter Feasible Ranges ....................................................................................................... 21 Optimization Functions to Match Simulated and Observed Results ........................................ 21 RESULTS OF PARAMETER CALIBRATION .......................................................................... 22 CONCLUSIONS AND RECOMMENDATIONS ....................................................................... 27 ACKNOWLEDGEMENT ............................................................................................................ 28 ABSTRACT .................................................................................................................................. 30................................................................................................................................. 30 INTRODUCTION ........................................................................................................................ 30 DATASET .................................................................................................................................... 31 THE RAKHA-PASUMARTHY-ADJERID CAR-FOLLOWING MODEL ............................... 32 First-order Steady-state Car-following Model .......................................................................... 32 Collision Avoidance Model ...................................................................................................... 33 Vehicle Dynamics Model ......................................................................................................... 34 PARAMETER CALIBRATION .................................................................................................. 34
منابع مشابه
Application of Naturalistic Truck Driving Data to Analyze and Improve Car Following Models
This research effort aims to compare car-following models when the models are calibrated to individual drivers with the naturalistic data. The models used are the GHR, Gipps, Intelligent Driver, Velocity Difference, Wiedemann, and the Fritzsche model. This research effort also analyzes the Wiedemann car-following model using car-following periods that occur at different speeds. The Wiedemann ca...
متن کاملA New Model of Car Following Behavior Based on Lane Change Effects Using Anticipation and Evaluation Idea
This paper aims to investigate a new and intricate behavior of immediate follower during the lane change of leader vehicle. Accordingly, the mentioned situation is a transient state in car following behavior during which the follower vehicle considerably deviates from conventional car following models for a limited time, which is a complex state including lateral and longitudinal movement simul...
متن کاملDriver Car-following Behavior Simulation using Fuzzy Rule-based Neural Network
This paper proposes a rule-based car-following model to simulate the driver decision process and model the associated vehicle longitudinal action in the car-following regime. In order to analyze individual driver characteristics and extract driving behavior rules, a fuzzy rule based neural network is constructed with the objective of presenting driver action rules under the associated traffic s...
متن کاملAn Agent-based Reinforcement Learning Model for Simulating Driver Heterogeneous Behavior during Safety Critical Events in Traffic
Driving behavior in traffic has been modeled quite successfully in simulation software using predefined car-following models rules. However, because most car-following models assume that vehicles could keep a safety distance away to avoid crash related conflicts; they are not capable to capture naturalistic driving behavior during safety-critical events. Also, vehicle detailed lateral maneuveri...
متن کاملIntelligent Control System Design for Car Following Maneuver Based on the Driver’s Instantaneous Behavior
Due to the increasing demand for traveling in public transportation systems and increasing traffic of vehicles, nowadays vehicles are getting to be intelligent to increase safety, reduce the probability of accident and also financial costs. Therefore, today, most vehicles are equipped with multiple safety control and vehicle navigation systems. In the process of developing such systems, simulat...
متن کامل