Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork's bill awn.

نویسندگان

  • Yael Abraham
  • Carmen Tamburu
  • Eugenia Klein
  • John W C Dunlop
  • Peter Fratzl
  • Uri Raviv
  • Rivka Elbaum
چکیده

The sessile nature of plants demands the development of seed-dispersal mechanisms to establish new growing loci. Dispersal strategies of many species involve drying of the dispersal unit, which induces directed contraction and movement based on changing environmental humidity. The majority of researched hygroscopic dispersal mechanisms are based on a bilayered structure. Here, we investigate the motility of the stork's bill (Erodium) seeds that relies on the tightening and loosening of a helical awn to propel itself across the surface into a safe germination place. We show that this movement is based on a specialized single layer consisting of a mechanically uniform tissue. A cell wall structure with cellulose microfibrils arranged in an unusually tilted helix causes each cell to spiral. These cells generate a macroscopic coil by spiralling collectively. A simple model made from a thread embedded in an isotropic foam matrix shows that this cellulose arrangement is indeed sufficient to induce the spiralling of the cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structures in the cell wall that enable hygroscopic movement of wheat awns.

The dispersal unit of wild wheat bears two prominent filaments called awns. The awns bend as they dry and straighten in a damp environment. This hygroscopic movement is explained by the orientation of the cellulose fibrils that build the cell wall, as follows. The stiff fibrils are embedded in a soft hygroscopic matrix. When the cell wall dries, the matrix shrinks but the fibrils do not. Theref...

متن کامل

The Hygroscopic Opening of Sesame Fruits Is Induced by a Functionally Graded Pericarp Architecture

To enhance the distribution of their seeds, plants often utilize hygroscopic deformations that actuate dispersal mechanisms. Such movements are based on desiccation-induced shrinkage of tissues in predefined directions. The basic hygroscopic deformations are typically actuated by a bi-layer configuration, in which shrinking of an active tissue layer is resisted by a stiff layer, generating a se...

متن کامل

Helical growth in plant organs: mechanisms and significance.

Many plants show some form of helical growth, such as the circular searching movements of growing stems and other organs (circumnutation), tendril coiling, leaf and bud reversal (resupination), petal arrangement (contortion) and leaf blade twisting. Recent genetic findings have revealed that such helical growth may be associated with helical arrays of cortical microtubules and of overlying cell...

متن کامل

Awn length variation and its effect on dispersal unit burial of Trachypogon spicatus (Poaceae).

Trachypogon spicatus, formerly known as Trachypogon plumosus, is a dominant grass in some savannas of Northern South America. Its dispersal unit, like many other species of the Andropogoneae tribe, bears a hygroscopic awn which facilitates its establishment in favorable microsites. Some authors have previously proposed that there is a positive correlation between awn length and dispersal unit b...

متن کامل

Synthesis of cellulose acetate nanofibers and its application in the release of some drugs

Objective(s): The purpose of this study was to compare novel sandwich-structured nanofibrous membranes, and coaxial and usual methods, to provide sustained-release delivery of morphine for drug delivery. In this work, synthesis ofnanofibrous cellulose acetate (NFC) was carried out by electrospinning. Methods: A weighed amount of cellulose acetate (CA) pow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 9 69  شماره 

صفحات  -

تاریخ انتشار 2012