Temporal and spatial scaling of planktonic responses to nutrient inputs into a subtropical embayment
نویسندگان
چکیده
We carried out a study of the spatial and temporal effects of land-derived material on water column nutrients and plankton dynamics in a subtropical estuary. The study had 2 parts: (1) a 3 yr synoptic monitoring program, and (2) a shorter 1.5 yr study during the second half of the program, which focused on individual pulses driven by discrete rainfall events. Although we found spatial differences in some water column parameters within Kāne‘ohe Bay and an adjacent oceanic site, inorganic nutrient levels were generally comparable in the Bay and offshore. One difference was that Prochlorococcus spp. numerically dominated the plankton at the oceanic site whereas Synechococcus spp. dominated at all Bay sites. The switch in dominance appears to be due to light characteristics and dissolved organic nitrogen (DON), but not dissolved inorganic nutrient availability. There were no annual cycles in water column parameters within the Bay; however, a comparison of dry and wet seasons did show some differences. Planktonic cell abundance was in general lower during the wet season, with the exception of opportunistic diatoms that were more abundant during the wet season. A drought during the study period may have influenced our results. Pulses were characterized by an elevation in inorganic nutrient concentrations in the Bay close to the stream mouth. The general response was an increase in abundance of microphytoplankton and chl a after a 3 to 6 d lag following the nutrient increase. Picophytoplankton showed an increase in fluorescence per cell after a 12 to 24 h lag, probably related to a decrease in irradiance associated with turbidity in runoff. The Bay can act as source of dissolved inorganic nutrients and plankton for oceanic waters; however, planktonic populations in the Bay are primarily autochthonous and do not represent an oceanic source of nutrients for plankton consumers within Kāne‘ohe Bay.
منابع مشابه
Coastal Bacterioplankton Community Dynamics in Response to a Natural Disturbance
In order to characterize how disturbances to microbial communities are propagated over temporal and spatial scales in aquatic environments, the dynamics of bacterial assemblages throughout a subtropical coastal embayment were investigated via SSU rRNA gene analyses over an 8-month period, which encompassed a large storm event. During non-perturbed conditions, sampling sites clustered into three...
متن کاملWater Quality Characteristics of Honokohau Harbor: A Subtropical Embayment Affected by Groundwater Intrusion!
This study describes the water quality characteristics of a subtropical embayment that is markedly affected by the infiltration of cold, nutrient-rich groundwater. The spatial, vertical, and tidal variations of physicochemical characteristics (e.g., temperature, salinity, oxygen, turbidity) and nutrients (e.g., nitrate, phosphate, ammonium) are depicted and show conditions of pronounced stratif...
متن کاملEcological constraints on planktonic nitrogen fixation in saline estuaries. I. Nutrient and trophic controls
Heterocystous, planktonic cyanobacteria capable of fixing atmospheric N2 into available nitrogen (N) are common and critically important to nutrient cycling in many lakes, yet they are rarely observed in estuaries at salinities >10 ppt, even when strongly N limited. In a series of mesocosm experiments using water from Narragansett Bay (Rhode Island), we manipulated top-down (grazing) and bottom...
متن کاملSensitivity of planktonic foraminifera to Mid-Pleistocene climate change in the SE Atlantic
In this paper we describe a record of planktonic foraminiferal relative abundance changes in Core T89-40 retrieved from the Walvis Ridge, SE Atlantic. The planktonic foraminiferal relative abundance changes reflect past (sub)surface water hydrography during the Mid-Pleistocene Transition. Statistical analysis shows that most variability in the planktonic foraminiferal relative abundance record ...
متن کاملLinking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood approach.
Leaf litter represents an important link between tree community composition, forest productivity and biomass, and ecosystem processes. In forests, the spatial distribution of trees and species-specific differences in leaf litter production and quality are likely to cause spatial heterogeneity in nutrient returns to the forest floor and, therefore, in the redistribution of soil nutrients. Using ...
متن کامل