Repeated immobilization stress disturbed steroidogenic machinery and stimulated the expression of cAMP signaling elements and adrenergic receptors in Leydig cells.
نویسندگان
چکیده
This study was designed to evaluate the effect of acute (2 h daily) and repeated (2 h daily for 2 or 10 consecutive days) immobilization stress (IMO) on: 1) the steroidogenic machinery homeostasis; 2) cAMP signaling; and the expression of receptors for main markers of 3) adrenergic and 4) glucocorticoid signaling in Leydig cells of adult rats. The results showed that acute IMO inhibited steroidogenic machinery in Leydig cells by downregulation of Scarb1 (scavenger receptor class B), Cyp11a1 (cholesterol side-chain cleavage enzyme), Cyp17a1 (17α-hydroxylase/17,20 lyase), and Hsd17b3 (17β-hydroxysteroid dehydrogenase) expression. In addition to acute IMO effects, repeated IMO increased transcription of Star (steroidogenic acute regulatory protein) and Arr19 (androgen receptor corepressor 19 kDa) in Leydig cells. In the same cells, the transcription of adenylyl cyclases (Adcy7, Adcy9, Adcy10) and cAMP-specific phosphodiesterases (Pde4a, Pde4b, Pde4d, Pde7a, Pde8a) was stimulated, whereas the expression of the genes encoding protein kinase A subunits were unaffected. Ten times repeated IMO increased the levels of all adrenergic receptors and β-adrenergic receptor kinase (Adrbk1) in Leydig cells. The transcription analysis was supported by cAMP/testosterone production. In this signaling scenario, partial recovery of testosterone production in medium/content was detected. The physiological significance of the present results was proven by ex vivo application of epinephrine, which increased cAMP/testosterone production by Leydig cells from control rats in greater fashion than from stressed. IMO did not affect the expression of transcripts for Crhr1/Crhr2 (corticotropin releasing hormone receptors), Acthr (adrenocorticotropin releasing hormone receptor), Gr (glucocorticoid receptor), and Hsd11b1 [hydroxysteroid (11-β) dehydrogenase 1], while all types of IMO stimulated the expression of Hsd11b2, the unidirectional oxidase with high affinity to inactivate glucocorticoids. Thus, presented data provide new molecular/transcriptional base for "fight/adaptation" of Leydig cells and new insights into the role of cAMP, epinephrine, and glucocorticoid signaling in recovery of stress-impaired Leydig cell steroidogenesis.
منابع مشابه
Sustained in vivo blockade of 1-adrenergic receptors prevented some of stress-triggered effects on steroidogenic machinery in Leydig cells
Stojkov NJ, Janjic MM, Baburski AZ, Mihajlovic AI, Drljaca DM, Sokanovic SJ, Bjelic MM, Kostic TS, Andric SA. Sustained in vivo blockade of 1-adrenergic receptors prevented some of stresstriggered effects on steroidogenic machinery in Leydig cells. Am J Physiol Endocrinol Metab 305: E194–E204, 2013. First published May 14, 2013; doi:10.1152/ajpendo.00100.2013.—This study was designed to systema...
متن کاملSustained in vivo blockade of α₁-adrenergic receptors prevented some of stress-triggered effects on steroidogenic machinery in Leydig cells.
This study was designed to systematically analyze and evaluate the effects of in vivo blockade of α₁-adrenergic receptors (α₁-ADRs) on the stress-induced disturbance of steroidogenic machinery in Leydig cells. Parameters followed 1) steroidogenic enzymes/proteins, transcription factors, and cAMP/testosterone production; 2) the main hallmarks of stress (epinephrine, glucocorticoids); and 3) tran...
متن کاملIn vivo blockade of α1-adrenergic receptors mitigates stress-disturbed cAMP and cGMP signaling in Leydig cells.
The molecular mechanism of stress-associated reproductive dysfunction is complex and largely unknown. This study was designed to systematically analyze molecular effects of systemic in vivo blockade of α1-adrenergic receptors (α1-ADRs) on stress-induced disturbance of cAMP/cGMP signaling in testosterone-producing Leydig cells using the following parameters (i) level of circulating stress hormon...
متن کاملTime-Course Changes of Steroidogenic Gene Expression and Steroidogenesis of Rat Leydig Cells after Acute Immobilization Stress
Leydig cells secrete testosterone, which is essential for male fertility and reproductive health. Stress increases the secretion of glucocorticoid (corticosterone, CORT; in rats), which decreases circulating testosterone levels in part through a direct action by binding to the glucocorticoid receptors (NR3C1) in Leydig cells. The intratesticular CORT level is dependent on oxidative inactivation...
متن کاملMolecular mechanisms of insulin-like growth factor-I mediated regulation of the steroidogenic acute regulatory protein in mouse leydig cells.
Growth factors are known to play diverse roles in steroidogenesis, a process regulated by the mitochondrial steroidogenic acute regulatory (StAR) protein. The mechanism of action of one such growth factor, IGF-I, was investigated in mouse Leydig tumor (mLTC-1) cells to determine its potential role in the regulation of StAR expression. mLTC-1 cells treated with IGF-I demonstrated temporal and co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 302 10 شماره
صفحات -
تاریخ انتشار 2012