Running head: CORTICOSPINAL EXCITABILITY IN SIMPLE RT TASKS Time Course of Corticospinal Excitability in Simple Reaction Time Tasks
نویسندگان
چکیده
The process of movement execution can be separated into two sections; the foreperiod and the response time. The foreperiod represents the time between the warning signal (WS) and the presentation of the imperative “go” signal, and the response time incorporates both the reaction time (RT) and the movement time (Schmidt & Lee, 2011). Transcranial magnetic stimulation (TMS) was used to probe corticospinal excitability (CE) which has been measured in a variety of RT tasks during both the foreperiod and the response time periods. The purpose of the two studies in this thesis was to measure when and at what rate changes in CE occur in both simple and complex tasks. The results of the first experiment indicated that CE levels quickly increased from baseline with the presentation of the WS. This was followed by a holding period in which CE was held constant until a decline in CE occurred prior to the presentation of the IS. This decline was followed by a rapid increase in CE as the movement was initiated and released. Importantly, even though levels of CE were decreasing relative to the start of the decline, participants were still in a heightened state as they prepared to release their movements. Furthermore, it is suggested that selective inhibitory control mechanisms were at least partly responsible for the decline prior to the IS. The results of the second experiment indicated that MEP amplitudes in a simple task were significantly larger compared to those in a complex task relative to both the IS and the onset of electromyography. These findings suggest that simple and complex tasks achieve differing levels of corticospinal excitability, and it is suggested that the complex requires the use of the cerebellum, which suppresses excitatory projections to the thalamus, and consequently to
منابع مشابه
Expectancy Induces Dynamic Modulation of Corticospinal Excitability
Behavioral studies using motor preparation paradigms have revealed that increased expectancy of a response signal shortens reaction times (RTs). Neurophysiological data suggest that in such paradigms, not only RT but also neuronal activity in the motor structures involved is modulated by expectancy of behaviorally relevant events. Here, we directly tested whether expectancy of a response signal...
متن کاملThe Time Course of Corticospinal Excitability during a Simple Reaction Time Task
The production of movement in a simple reaction time task can be separated into two time periods: the foreperiod, which is thought to include preparatory processes, and the reaction time interval, which includes initiation processes. To better understand these processes, transcranial magnetic stimulation has been used to probe corticospinal excitability at various time points during response pr...
متن کاملHuman corticospinal excitability evaluated with transcranial magnetic stimulation during different reaction time paradigms.
The aim of this study was to evaluate corticospinal excitability of both hemispheres during the reaction time (RT) using transcranial magnetic stimulation (TMS). Nine right-handed subjects performed right and left thumb extensions in simple (SRT), choice (CRT) and go/no-go auditory RT paradigms. TMS, inducing motor-evoked potentials (MEPs) simultaneously in the extensor pollicis brevis muscles ...
متن کاملThe time course of changes in motor cortex excitability associated with voluntary movement.
The excitability of the motor cortex is modulated before and after voluntary movements. Transcranial magnetic stimulation studies showed increased corticospinal excitability from about 80 and 100 ms before EMG onset for simple reaction time and self-paced movements, respectively. Following voluntary movements, there are two phases of increased corticospinal excitability from 0 to approximately ...
متن کاملNon-Invasive Brain Stimulation for Enhancement of Corticospinal Excitability and Motor Performance
During the past .. years, non-invasive .rain stimulation has .ecome an emerging .eld in clinical neuroscience due to its capability to transiently modulate corticospinal excitability, motor and cognitive functions. .hereas transcranial magnetic stimulation has .een used e.tensively since more than t.o decades ago as a potential .neuromodulator., transcranial current stimulation .tCS. has more r...
متن کامل