Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases.
نویسندگان
چکیده
The life span of a mammalian mRNA is determined, in part, by the binding of regulatory proteins and small RNA-guided complexes. The conserved endonuclease activity of Argonaute2 requires extensive complementarity between a small RNA and its target and is not used by animal microRNAs, which pair with their targets imperfectly. Here we investigate the endonucleolytic function of Ago2 and other nucleases by transcriptome-wide profiling of mRNA cleavage products retaining 5' phosphate groups in mouse embryonic stem cells (mESCs). We detect a prominent signature of Ago2-dependent cleavage events and validate several such targets. Unexpectedly, a broader class of Ago2-independent cleavage sites is also observed, indicating participation of additional nucleases in site-specific mRNA cleavage. Within this class, we identify a cohort of Drosha-dependent mRNA cleavage events that functionally regulate mRNA levels in mESCs, including one in the Dgcr8 mRNA. Together, these results highlight the underappreciated role of endonucleolytic cleavage in controlling mRNA fates in mammals.
منابع مشابه
Sequence Features of Drosha and Dicer Cleavage Sites Affect the Complexity of IsomiRs
The deep-sequencing of small RNAs has revealed that different numbers and proportions of miRNA variants called isomiRs are formed from single miRNA genes and that this effect is attributable mainly to imprecise cleavage by Drosha and Dicer. Factors that influence the degree of cleavage precision of Drosha and Dicer are under investigation, and their identification may improve our understanding ...
متن کاملArgonaute-associated short introns are a novel class of gene regulators
MicroRNAs (miRNAs) are short (∼22 nucleotides) regulators of gene expression acting by direct base pairing to 3'-UTR target sites in messenger RNAs. Mature miRNAs are produced by two sequential endonucleolytic cleavages facilitated by Drosha in the nucleus and Dicer in the cytoplasm. A subclass of miRNAs, termed mirtrons, derives from short introns and enters the miRNA biogenesis pathway as Dic...
متن کاملRecognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha.
A critical step during human microRNA maturation is the processing of the primary microRNA transcript by the nuclear RNaseIII enzyme Drosha to generate the approximately 60-nucleotide precursor microRNA hairpin. How Drosha recognizes primary RNA substrates and selects its cleavage sites has remained a mystery, especially given that the known targets for Drosha processing show no discernable seq...
متن کاملMolecular mechanisms of RNA interference.
Small RNA molecules regulate eukaryotic gene expression during development and in response to stresses including viral infection. Specialized ribonucleases and RNA-binding proteins govern the production and action of small regulatory RNAs. After initial processing in the nucleus by Drosha, precursor microRNAs (pre-miRNAs) are transported to the cytoplasm, where Dicer cleavage generates mature m...
متن کاملLower and upper stem-single-stranded RNA junctions together determine the Drosha cleavage site.
Microprocessor [Drosha-DGCR8 (DiGeorge syndrome critical region gene 8) complex] processing of primary microRNA (pri-miRNA) is the critical first step in miRNA biogenesis, but how the Drosha cleavage site is determined has been unclear. Previous models proposed that the Drosha-DGCR8 complex measures either ~22 nt from the upper stem-single-stranded RNA (ssRNA, terminal loop) junction or ~11 nt ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cell
دوره 38 6 شماره
صفحات -
تاریخ انتشار 2010