Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei.
نویسندگان
چکیده
Transmission of a protozoan parasite from a vertebrate to invertebrate host is accompanied by cellular differentiation. The signals from the environment that trigger the process are poorly understood. The model parasite Trypanosoma brucei proliferates in the mammalian bloodstream and in the tsetse fly. On ingestion by the tsetse, the trypanosome undergoes a rapid differentiation that is marked by replacement of the variant surface glycoprotein (VSG) coat with GPI-anchored EP and GPEET procyclins. Here we show that a cold shock of DeltaT > 15 degrees C is sufficient to reversibly induce high-level expression of the insect stage-specific EP gene in the mammalian bloodstream stages of T. brucei. The 3'-UTR of the EP mRNA is necessary and sufficient for the increased expression. During cold shock, EP protein accumulates in the endosomal compartment in the proliferating, slender, bloodstream stage, whereas the EP is present on the plasma membrane in the quiescent, stumpy, bloodstream stage. Thus, there is a novel developmentally regulated cell surface access control mechanism for a GPI-anchored protein. In addition to inducing EP expression, cold shock results in the acquisition of sensitivity to micromolar concentrations of cis-aconitate and citrate by stumpy but not slender bloodstream forms. The cis-aconitate and citrate commit stumpy bloodstream cells to differentiation to the procyclic stage along with rapid initial proliferation. We propose a hierarchical model of three events that regulate differentiation after transmission to the tsetse: sensing the temperature change, surface access of a putative receptor, and sensing of a chemical cue.
منابع مشابه
Genome-wide RNAi selection identifies a regulator of transmission stage-enriched gene families and cell-type differentiation in Trypanosoma brucei
Trypanosoma brucei, causing African sleeping-sickness, exploits quorum-sensing (QS) to generate the 'stumpy forms' necessary for the parasite's transmission to tsetse-flies. These quiescent cells are generated by differentiation in the bloodstream from proliferative slender forms. Using genome-wide RNAi selection we screened for repressors of transmission stage-enriched mRNAs in slender forms, ...
متن کاملTrypanosoma brucei RBP16 is a mitochondrial Y-box family protein with guide RNA binding activity.
Trypanosoma brucei mitochondria possess a unique mechanism of mRNA maturation called RNA editing. In this process, uridylate residues are inserted and deleted posttranscriptionally into pre-mRNA to create translatable messages. The genetic information for RNA editing resides in small RNA molecules called guide RNAs (gRNAs). Thus, proteins in direct contact with gRNA are likely to catalyze or in...
متن کاملTarget of rapamycin (TOR) kinase in Trypanosoma brucei: an extended family.
The complex life cycle of Trypanosoma brucei provides an excellent model system to understand signalling pathways that regulate development. We described previously the classical functions of TOR (target of rapamycin) 1 and TOR2 in T. brucei. In a more recent study, we described a novel TOR kinase, named TOR4, which regulates differentiation from the proliferative infective form to the quiescen...
متن کاملDevelopmentally regulated trafficking of the lysosomal membrane protein p67 in Trypanosoma brucei.
p67 is a lysosomal type I membrane glycoprotein of Trypanosoma brucei. In procyclic stage cells p67 trafficks to the lysosome without modification, but in the bloodstream stage Golgi processing adds poly-N-acetyllactosamine to N-glycans. In both stages proteolytic fragmentation occurs in the lysosome, but turnover is approximately nine times faster in bloodstream cells. Trafficking of wildtype ...
متن کاملGlycosylphosphatidylinositol-dependent protein trafficking in bloodstream stage Trypanosoma brucei.
We have previously demonstrated that glycosylphosphatidylinositol (GPI) anchors strongly influence protein trafficking in the procyclic insect stage of Trypanosoma brucei (M. A. McDowell, D. A. Ransom, and J. D. Bangs, Biochem. J. 335:681-689, 1998), where GPI-minus variant surface glycoprotein (VSG) reporters have greatly reduced rates of endoplasmic reticulum (ER) exit but are ultimately secr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 18 22 شماره
صفحات -
تاریخ انتشار 2004