Kinetic and structural analysis of coxsackievirus B3 receptor interactions and formation of the A-particle.
نویسندگان
چکیده
UNLABELLED The coxsackievirus and adenovirus receptor (CAR) has been identified as the cellular receptor for group B coxsackieviruses, including serotype 3 (CVB3). CAR mediates infection by binding to CVB3 and catalyzing conformational changes in the virus that result in formation of the altered, noninfectious A-particle. Kinetic analyses show that the apparent first-order rate constant for the inactivation of CVB3 by soluble CAR (sCAR) at physiological temperatures varies nonlinearly with sCAR concentration. Cryo-electron microscopy (cryo-EM) reconstruction of the CVB3-CAR complex resulted in a 9.0-Å resolution map that was interpreted with the four available crystal structures of CAR, providing a consensus footprint for the receptor binding site. The analysis of the cryo-EM structure identifies important virus-receptor interactions that are conserved across picornavirus species. These conserved interactions map to variable antigenic sites or structurally conserved regions, suggesting a combination of evolutionary mechanisms for receptor site preservation. The CAR-catalyzed A-particle structure was solved to a 6.6-Å resolution and shows significant rearrangement of internal features and symmetric interactions with the RNA genome. IMPORTANCE This report presents new information about receptor use by picornaviruses and highlights the importance of attaining at least an ∼9-Å resolution for the interpretation of cryo-EM complex maps. The analysis of receptor binding elucidates two complementary mechanisms for preservation of the low-affinity (initial) interaction of the receptor and defines the kinetics of receptor-catalyzed conformational change to the A-particle.
منابع مشابه
Kinetic models for receptor-catalyzed conversion of coxsackievirus B3 to A-particles.
UNLABELLED The immunoglobulin superfamily protein receptors for poliovirus, human rhinovirus, and coxsackievirus B (CVB) serve to bind the viruses to target cells and to facilitate the release of the virus genome by catalyzing the transition from the mature infectious virus to the A-particle uncoating intermediate. Receptor binding sites characterized by two equilibrium dissociation constants h...
متن کاملRT-PCR Detection of Coxsackievirus B3: A Viral Myocarditis
Backgrounds and Aims: Coxsakievirus B3 (CVB3), one of the six Coxsakievirus B serotypes, is a member of the Enterovirus genus within the Picornaviridae family. CVB3 is an important pathogen of viral myocarditis, which accounts for more than 50% of viral myocarditis cases. The genome of CVB3, like that of other Entroviruses, is a single-stranded, sense, polyadenylated RNA molecule with 7400 nucl...
متن کاملCoxsackievirus B3 protease 3C induces cell death in eukaryotic cells
Abstract: Coxsackievirus B3 (CVB3) is the most common agent known to cause viral myocarditis. The viral genome encodes a single polyprotein that is cleaved to produce several proteins by virally encoded proteases. Most of this proteolytic processing is catalyzed by a cysteine protease called 3C. The 3C protease plays major role in viral replication and cellular damage. To understand the mecha...
متن کاملModeling and interactions analysis of the novel antagonist agent flibanserin with 5-hydroxytryptamine 2A (5-HT2A) serotonin receptor as a HSDD treatment in premenopausal women
Flibanserin is a novel antagonist small molecule to treat the hypoactive sexual desire disorder (HSDD) in the premenopausal women. The present article is related to the structural and electronic properties study and docking analysis of the title compound with 5-hydroxytryptamine 2A (5-HT2A) serotonin receptor. To access these aims, the molecular structure of the said compound was optimized usin...
متن کاملEvaluation of Nucleic Acid Sequence Based Amplification (NASBA) and Reverse Transcription Polymerase Chain Reaction for Detection of Coxsackievirus B3 in Cell Culture and Animal Tissue Samples
Enteroviruses are the causative agents of a number of diseases in humans. Group B coxsackieviruses are believed to be the most common viral agents responsible for human heart disease. Genomic data of enteroviruses has allowed developing new molecular approaches such as Nucleic Acid Sequence Based Amplification (NASBA) for detection of such viruses. In this study, coxsackievirus B3 (CVB3) was de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 88 10 شماره
صفحات -
تاریخ انتشار 2014