A Novel Prior- and Motion-Based Compressed Sensing Method for Small-Animal Respiratory Gated CT
نویسندگان
چکیده
Low-dose protocols for respiratory gating in cardiothoracic small-animal imaging lead to streak artifacts in the images reconstructed with a Feldkamp-Davis-Kress (FDK) method. We propose a novel prior- and motion-based reconstruction (PRIMOR) method, which improves prior-based reconstruction (PBR) by adding a penalty function that includes a model of motion. The prior image is generated as the average of all the respiratory gates, reconstructed with FDK. Motion between respiratory gates is estimated using a nonrigid registration method based on hierarchical B-splines. We compare PRIMOR with an equivalent PBR method without motion estimation using as reference the reconstruction of high dose data. From these data acquired with a micro-CT scanner, different scenarios were simulated by changing photon flux and number of projections. Methods were evaluated in terms of contrast-to-noise-ratio (CNR), mean square error (MSE), streak artefact indicator (SAI), solution error norm (SEN), and correction of respiratory motion. Also, to evaluate the effect of each method on lung studies quantification, we have computed the Jaccard similarity index of the mask obtained from segmenting each image as compared to those obtained from the high dose reconstruction. Both iterative methods greatly improved FDK reconstruction in all cases. PBR was prone to streak artifacts and presented blurring effects in bone and lung tissues when using both a low number of projections and low dose. Adopting PBR as a reference, PRIMOR increased CNR up to 33% and decreased MSE, SAI and SEN up to 20%, 4% and 13%, respectively. PRIMOR also presented better compensation for respiratory motion and higher Jaccard similarity index. In conclusion, the new method proposed for low-dose respiratory gating in small-animal scanners shows an improvement in image quality and allows a reduction of dose or a reduction of the number of projections between two and three times with respect to previous PBR approaches.
منابع مشابه
Investigation of Different Sparsity Transforms for the PICCS Algorithm in Small-Animal Respiratory Gated CT
Respiratory gating helps to overcome the problem of breathing motion in cardiothoracic small-animal imaging by acquiring multiple images for each projection angle and then assigning projections to different phases. When this approach is used with a dose similar to that of a static acquisition, a low number of noisy projections are available for the reconstruction of each respiratory phase, thus...
متن کاملAdvanced Motion Correction Methods in PET
With the arrival of increasingly higher resolution PET systems, small amounts of motion can cause significant blurring in the images, compared to the intrinsic resolutions of the scanners. In this work, we have reviewed advanced correction methods for the three cases of (i) unwanted patient motion, as well as motions due to (ii) cardiac and (iii) respiratory cycles. For the first type of ...
متن کاملComparison of Total Variation with a Motion Estimation Based Compressed Sensing Approach for Self-Gated Cardiac Cine MRI in Small Animal Studies
PURPOSE Compressed sensing (CS) has been widely applied to prospective cardiac cine MRI. The aim of this work is to study the benefits obtained by including motion estimation in the CS framework for small-animal retrospective cardiac cine. METHODS We propose a novel B-spline-based compressed sensing method (SPLICS) that includes motion estimation and generalizes previous spatiotemporal total ...
متن کاملImpact of PET - CT motion correction in minimising the gross tumour volume in non-small cell lung cancer
AbstractObjective: To investigate the impact of respiratory motion on localization, and quantification lung lesions for the Gross Tumour Volume utilizing an in-house developed Auto3Dreg programme and dynamic NURBS-based cardiac-torso digitised phantom (NCAT). Methods: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumour lesions. The m...
متن کاملHigh-resolution whole-heart angiography with compressed sensing and 3D respiratory motion compensation in 5 minutes
Background The electrocardiogram and respiratory-gated 3D steadystate free precession (3D-SSFP) sequence acquired during free-breathing generates a high-resolution anatomic datasets of the entire thorax, allowing for a comprehensive evaluation of intracardiac, coronary, and vascular abnormalities. An important limitation of 3D-SSFP, however, is its long imaging time during which the patient’s h...
متن کامل