Corneal keratocytes: in situ and in vitro organization of cytoskeletal contractile proteins.
نویسندگان
چکیده
PURPOSE Recent studies of corneal wound healing suggest that activated corneal keratocytes develop myofibroblast-like characteristics including a putative contractile apparatus comprised, in part, of intracellular microfilament bundles (i.e., stress fibers) containing f-actin, myosin, and alpha-actinin; extracellular fibronectin fibrils; and fibronectin surface membrane receptors (alpha 5 beta 1 integrin). The purpose of this study was to determine the expression and organization of specific components of the contractile apparatus in normal, quiescent (in situ) corneal keratocytes, and to compare the in situ organization with that of activated, tissue culture (in vitro) corneal keratocytes that potentially mimic wound healing fibroblasts. METHODS Cat corneal tissue was obtained immediately after sacrifice and was either fixed for in situ studies or cultured with MEM supplemented with 10% fetal calf serum for in vitro studies. Keratocytes (in situ and in vitro) were stained with the following probes: phalloidin, a mushroom toxin that specifically binds to f-actin; rabbit anti-bovine aortic myosin; monoclonal anti-human alpha-actinin; monoclonal anti-human vimentin; rabbit anti-human alpha 5 beta 1 integrin; monoclonal anti-human alpha 5 integrin; monoclonal anti-human connexin 43; and goat anti-human fibronectin. The cytoskeletal organization and co-localization were evaluated using epifluorescent and confocal microscopy. RESULTS Normal, quiescent corneal keratocytes were distributed within the cornea as a lattice network, interconnected by broad, cellular processes extending from a flattened cell body. The f-actin distribution of in situ keratocytes was predominantly cortical and appeared to be closely associated with the plasma membrane. In addition, punctate areas that appeared to correlate with the localization of adhesion sites were identified. These punctate regions appeared to stain with antibodies to alpha 5 beta 1 but to not alpha 5. These data suggest that the fibronectin receptor, alpha 5 beta 1 integrin, is not present on normal corneal keratocytes. Based on co-localization studies, rabbit anti-bovine aortic myosin and monoclonal anti-alpha-actinin staining had similar distributions to FITC-phalloidin. Interconnections between keratocytes also showed staining for connexin 43, indicating the presence of gap junctions. By contrast, activated, cultured (in vitro) keratocytes showed an FITC-phalloidin staining pattern localized predominantly along intracellular stress fibers not detected in normal, quiescent keratocytes. Myosin and alpha-actinin staining had a similar stress fiber distribution, arranged in alternating bands and suggesting a sarcomeric distribution. Associated with stress fibers there was both anti-alpha 5 beta 1 and anti-alpha 5 staining, indicating the presence of focal adhesions. CONCLUSIONS This study demonstrates that there are major structural differences in the organization of contractile cytoskeletal proteins between normal, quiescent (in situ), and activated (in vitro) keratocytes. In situ, contractile proteins appear to be associated with the cortical f-actin network, probably related to maintenance of cell shape and interconnectivity. Alternatively, activated keratocytes were characterized by the presence of a putative contractile apparatus comprised of f-actin, myosin, and alpha-actinin organized into sarcomeric, muscle-like bundles (stress fibers) associated with focal contacts containing alpha 5 beta 1 integrin. These data suggest that activation of keratocytes, i.e. myofibroblast transformation, must involve the reorganization of cytoplasmic contractile proteins as well as the expression of alpha 5 beta 1 integrin and the formation of focal contacts.
منابع مشابه
Corneal keratocytes: phenotypic and species differences in abundant protein expression and in vitro light-scattering.
PURPOSE Previous studies suggest that corneal haze after injury involves changes in the light-scattering properties of keratocytes that are possibly linked to the abundant expression of water-soluble proteins. The purpose of this study was to determine the protein expression pattern of keratocytes from different species and different cultured rabbit keratocyte phenotypes and to assess differenc...
متن کاملIn situ localization of cytoskeletal elements in the human trabecular meshwork and cornea.
The authors compared cytoskeletal elements of the in situ human trabecular-meshwork cell with in situ human corneal cells using indirect immunofluorescence staining for tubulin and intermediate filaments (vimentin, cytokeratin, and desmin) and NBD-phallacidin staining for f-actin using both fixed frozen and unfixed frozen sections from postmortem eyes. Both f-actin and tubulin were found throug...
متن کاملExpression of VSX1 in human corneal keratocytes during differentiation into myofibroblasts in response to wound healing.
PURPOSE To characterize the expression of the visual system homeobox gene (VSX1) in human corneal keratocytes both in vitro and in vivo. METHODS The expression of VSX1 was evaluated through semiquantitative RT-PCR, immunofluorescence and in situ hybridization both in corneas (either freshly obtained or wounded) and in collagenase/hyaluronidase-isolated keratocytes grown in the absence or pres...
متن کاملEstablishing a reproducible method for the culture of primary equine corneal cells.
OBJECTIVE To establish a reproducible method for the culture of primary equine corneal epithelial cells, keratocytes, and endothelial cells and to describe each cell's morphologic characteristics, immunocytochemical staining properties and conditions required for cryopreservation. PROCEDURES Corneas from eight horses recently euthanized for reasons unrelated to this study were collected asept...
متن کاملExpression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ
Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 35 2 شماره
صفحات -
تاریخ انتشار 1994