A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations.

نویسندگان

  • Rubén Esteban
  • Asier Zugarramurdi
  • Pu Zhang
  • Peter Nordlander
  • Francisco J García-Vidal
  • Andrei G Borisov
  • Javier Aizpurua
چکیده

The optical response of plasmonic nanogaps is challenging to address when the separation between the two nanoparticles forming the gap is reduced to a few nanometers or even subnanometer distances. We have compared results of the plasmon response within different levels of approximation, and identified a classical local regime, a nonlocal regime and a quantum regime of interaction. For separations of a few Ångstroms, in the quantum regime, optical tunneling can occur, strongly modifying the optics of the nanogap. We have considered a classical effective model, so called Quantum Corrected Model (QCM), that has been introduced to correctly describe the main features of optical transport in plasmonic nanogaps. The basics of this model are explained in detail, and its implementation is extended to include nonlocal effects and address practical situations involving different materials and temperatures of operation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bridging quantum and classical plasmonics with a quantum-corrected model.

Electromagnetic coupling between plasmonic resonances in metallic nanoparticles allows for engineering of the optical response and generation of strong localized near-fields. Classical electrodynamics fails to describe this coupling across sub-nanometer gaps, where quantum effects become important owing to non-local screening and t...

متن کامل

The Morphology of Narrow Gaps Modifies the Plasmonic Response

The optical response of a plasmonic gapantenna is mainly determined by the Coulomb interaction of the two constituent arms of the antenna. Using rigorous calculations supported by simple analytical models, we observe how the morphology of a nanometric gap separating two metallic rods dramatically modifies the plasmonic response. In the case of rounded terminations at the gap, a conventional set...

متن کامل

Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers.

Using a fully quantum mechanical approach we study the optical response of a strongly coupled metallic nanowire dimer for variable separation widths of the junction between the nanowires. The translational invariance of the system allows to apply the time-dependent density functional theory (TDDFT) for nanowires of diameters up to 10 nm which is the largest size considered so far in quantum mod...

متن کامل

Impacts of Nanoparticles and Nano Rod Arrays on Optical Generation Rate in Plasmonic-Based Solar Cells

In this article, the effect of plasmonics properties of metal nanorods and nanoparticles on solar cell performance were investigated and simulated. Due to the classic solar cell disadvantages, it seems that a plasmonic solar cell is one of these methods. In plasmonic solar cells, because of plasmonic effect, a high electric field builds around metal nanoparticles so that high conversion efficie...

متن کامل

Quantum optical response of metallic nanoparticles and dimers.

The optical properties of metallic nanoparticles (NPs) can be described with analytical models based on fundamental quantum mechanical principles, of which the Drude model constitutes the classical limit. Here, we examine the plasmonic properties of silver and gold nanospheres and dimers, with radii ranging from 10 to 1 nm, extending from the classically described regime to the quantum size reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Faraday discussions

دوره 178  شماره 

صفحات  -

تاریخ انتشار 2015