Highly-effective gating of single-molecule junctions: an electrochemical approach.
نویسندگان
چکیده
We report an electrochemical gating approach with ∼100% efficiency to tune the conductance of single-molecule 4,4'-bipyridine junctions using scanning-tunnelling-microscopy break junction technique. Density functional theory calculation suggests that electrochemical gating aligns molecular frontier orbitals relative to the electrode Fermi-level, switching the molecule from an off resonance state to "partial" resonance.
منابع مشابه
Break junction under electrochemical gating: testbed for single-molecule electronics.
Molecular electronics aims to construct functional molecular devices at the single-molecule scale. One of the major challenges is to construct a single-molecule junction and to further manipulate the charge transport through the molecular junction. Break junction techniques, including STM break junctions and mechanically controllable break junctions are considered as testbed to investigate and ...
متن کاملSingle-Molecule Charge Transport and Electrochemical Gating in Redox-Active Perylene Diimide Junctions
A series of redox-active perylene tetracarboxylic diimide (PTCDI) derivatives have been synthesized and studied by electrochemical cyclic voltammetry and electrochemical scanning tunnelling microscopy break junction techniques. These PTCDI molecules feature the substitution of pyrrolidine at the bay (1,7-) position of perylene and are named pyrrolidine-PTCDIs. These moieties exhibit a small ban...
متن کاملTunable charge transport in single-molecule junctions via electrolytic gating.
We modulate the conductance of electrochemically inactive molecules in single-molecule junctions using an electrolytic gate to controllably tune the energy level alignment of the system. Molecular junctions that conduct through their highest occupied molecular orbital show a decrease in conductance when applying a positive electrochemical potential, and those that conduct though their lowest un...
متن کاملA protein transistor made of an antibody molecule and two gold nanoparticles.
A major challenge in molecular electronics is to attach electrodes to single molecules in a reproducible manner to make molecular junctions that can be operated as transistors. Several attempts have been made to attach electrodes to proteins, but these devices have been unstable. Here, we show that self-assembly can be used to fabricate, in a highly reproducible manner, molecular junctions in w...
متن کاملRegulating a benzodifuran single molecule redox switch via electrochemical gating and optimization of molecule/electrode coupling.
We report a novel strategy for the regulation of charge transport through single molecule junctions via the combination of external stimuli of electrode potential, internal modulation of molecular structures, and optimization of anchoring groups. We have designed redox-active benzodifuran (BDF) compounds as functional electronic units to fabricate metal-molecule-metal (m-M-m) junction devices b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 50 100 شماره
صفحات -
تاریخ انتشار 2014