Monitoring of Intracellular Tau Aggregation Regulated by OGA/OGT Inhibitors
نویسندگان
چکیده
Abnormal phosphorylation of tau has been considered as a key pathogenic mechanism inducing tau aggregation in multiple neurodegenerative disorders, collectively called tauopathies. Recent evidence showed that tau phosphorylation sites are protected with O-linked β-N-acetylglucosamine (O-GlcNAc) in normal brain. In pathological condition, tau is de-glycosylated and becomes a substrate for kinases. Despite the importance of O-GlcNAcylation in tau pathology, O-GlcNAc transferase (OGT), and an enzyme catalyzing O-GlcNAc to tau, has not been carefully investigated in the context of tau aggregation. Here, we investigated intracellular tau aggregation regulated by BZX2, an inhibitor of OGT. Upon the inhibition of OGT, tau phosphorylation increased 2.0-fold at Ser199 and 1.5-fold at Ser396, resulting in increased tau aggregation. Moreover, the BZX2 induced tau aggregation was efficiently reduced by the treatment of Thiamet G, an inhibitor of O-GlcNAcase (OGA). Our results demonstrated the protective role of OGT in tau aggregation and also suggest the counter-regulatory mechanism of OGA and OGT in tau pathology.
منابع مشابه
O-GlcNAc cycling modulates neurodegeneration.
A ge-associated neurodegenerative diseases are not only a great scientific challenge but a medical, economic, and social burden of enormous dimensions. This family of diseases includes Alzheimer’s (AD), Parkinson disease, Huntington disease, and others, among which AD is the most common. AD alone affects more than 35 million people worldwide. Although these disorders are products of different e...
متن کاملVersatile O-GlcNAc Transferase Assay for High-Throughput Identification of Enzyme Variants, Substrates, and Inhibitors
The dynamic glycosylation of serine/threonine residues on nucleocytoplasmic proteins with a single N-acetylglucosamine (O-GlcNAcylation) is critical for many important cellular processes. Cellular O-GlcNAc levels are highly regulated by two enzymes: O-GlcNAc transferase (OGT) is responsible for GlcNAc addition and O-GlcNAcase (OGA) is responsible for removal of the sugar. The lack of a rapid an...
متن کاملO-GlcNAcase Expression is Sensitive to Changes in O-GlcNAc Homeostasis
O-linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification involving an attachment of a single β-N-acetylglucosamine moiety to serine or threonine residues in nuclear and cytoplasmic proteins. Cellular O-GlcNAc levels are regulated by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which add and remove the modification, respectively. The levels of O-GlcNAc can r...
متن کاملA Conserved Splicing Silencer Dynamically Regulates O-GlcNAc Transferase Intron Retention and O-GlcNAc Homeostasis
Modification of nucleocytoplasmic proteins with O-GlcNAc regulates a wide variety of cellular processes and has been linked to human diseases. The enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) add and remove O-GlcNAc, but the mechanisms regulating their expression remain unclear. Here, we demonstrate that retention of the fourth intron of OGT is regulated in response to O-GlcNAc leve...
متن کاملolecular mechanisms of O-GlcNAcylation
Protein glycosylation with O-linked N-acetylglucosamine (OGlcNAc) is a reversible post-translational modification of serines/threonines on metazoan proteins and occurring with similar time scales, dynamics and stoichiometry as protein phosphorylation. Levels of this modification are regulated by two enzymes—O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA). Although the biochemistry of th...
متن کامل