Sequence of toxic events in arsine-induced hemolysis in vitro: implications for the mechanism of toxicity in human erythrocytes.

نویسندگان

  • S L Winski
  • D S Barber
  • L T Rael
  • D E Carter
چکیده

Arsine, the hydride of arsenic (AsH3), is the most acutely toxic form of arsenic, causing rapid and severe hemolysis upon exposure. The mechanism of action is not known, and there are few detailed investigations of the toxicity in a controlled system. To examine arsine hemolysis and understand the importance of various toxic responses, human erythrocytes were incubated with arsine in vitro, and markers of toxicity were determined as a function of time. The earliest indicators of damage were changes in sodium and potassium levels. Within 5 min incubation with 1 mm arsine, the cells lost volume control, manifested by leakage of potassium, influx of sodium, and increases in hematocrit. Arsine did not, however, significantly alter ATP levels nor inhibit ATPases. These changes were followed by profound disturbances in membrane ultrastructure (examined by light and electron microscopy). By 10 min, significant numbers of damaged cells formed, and their numbers increased over time. These events preceded hemolysis, which was not significant until 30 min. It has been proposed that arsine interacts with hemoglobin to form toxic hemoglobin oxidation products, and this was also investigated as a potential cause of hemolysis. Essentially on contact with arsine, methemoglobin was formed but only reached 2-3% of the total cellular hemoglobin and remained unchanged for up to 90 min. There was no evidence that further oxidation products (hemin and Heinz bodies) were formed in this system. Based on these observations, hemolysis appears to be dependent on membrane disruption by a mechanism other than hemoglobin oxidation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective Effect of Quercetin on Oxidative Stress in Glucose-6-Phosphate Dehydrogenase-Deficient Erythrocytes in Vitro

Glucose-6-phosphate dehydrogenase (G6PD) deficient subjects are vulnerable to oxidative stress. Quercetin, a flavonoids, has been employed as a potent oxygen-free radical scavenger in order to assess the protective effects of quercetin against H2O2-induced oxidative damage in G6PD-deficient and normal human erythrocytes. Erythrocytes of G6PD-deficient (n = 10) and normal (n = 10) subjects were ...

متن کامل

Protective Effect of Quercetin on Oxidative Stress in Glucose-6-Phosphate Dehydrogenase-Deficient Erythrocytes in Vitro

Glucose-6-phosphate dehydrogenase (G6PD) deficient subjects are vulnerable to oxidative stress. Quercetin, a flavonoids, has been employed as a potent oxygen-free radical scavenger in order to assess the protective effects of quercetin against H2O2-induced oxidative damage in G6PD-deficient and normal human erythrocytes. Erythrocytes of G6PD-deficient (n = 10) and normal (n = 10) subjects were ...

متن کامل

Hazardous effects of arsine: a short review.

This review details the known health effects of arsine as well as the existing theories on the mechanism by which arsine exerts its toxic effect and conditions of occupational exposure to this gas. Exposure to arsine in occupational settings occurs mostly in the chemical and metallurgical industries when nascent hydrogen reacts with metallic arsenic or arsenic compounds. The available data indi...

متن کامل

In vitro tissue specificity for arsine and arsenite toxicity in the rat.

The mechanism of arsine (AsH3) toxicity is not completely understood. In this investigation, we determined AsH3 and arsenite (AsIII) toxicity in Sprague Dawley rat blood, liver, and kidney. In all systems, there were dose- and time-dependent responses. Red blood cells were very susceptible to AsH3 toxicity. This was demonstrated by an immediate intracellular potassium loss and by hemolysis and ...

متن کامل

Application of Riboflavin-Deficient Rat Erythrocytes in the in Vitro Assay of Faba Bean Toxicity

Background: Faba bean toxicity (favism) is a common condition observed in our region. Objective: To develop a short and simple technique involving the use of riboflavin-deficient rats to test in vivo faba bean toxicity. Methods/Results: Sprague Dawley rats were maintained on a riboflavin-deficient diet and their vitamin B2 status was monitored by the assay of erythrocyte glutathione reductase (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fundamental and applied toxicology : official journal of the Society of Toxicology

دوره 38 2  شماره 

صفحات  -

تاریخ انتشار 1997