Discriminative Batch Mode Active Learning

نویسندگان

  • Yuhong Guo
  • Dale Schuurmans
چکیده

Active learning sequentially selects unlabeled instances to label with the goal of reducing the effort needed to learn a good classifier. Most previous studies in active learning have focused on selecting one unlabeled instance to label at one time while retraining in each iteration. Recently a few batch mode active learning approaches have been proposed that select a set of most informative unlabeled instances in each iteration under the guidance of some heuristic scores. In this paper, we propose a discriminative batch mode active learning approach that formulates the instance selection task as a continuous optimization problem over auxiliary instance selection variables. The optimization is formulated to maximize the discriminative classification performance of the target classifier, while also taking the unlabeled data into account. Although the objective is not convex, we can manipulate a quasi-Newton method to obtain a good local solution. Our empirical studies on UCI datasets show that the proposed active learning is more effective than current state-of-the art batch mode active learning algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Instance Sampling via Matrix Partition

Recently, batch-mode active learning has attracted a lot of attention. In this paper, we propose a novel batch-mode active learning approach that selects a batch of queries in each iteration by maximizing a natural mutual information criterion between the labeled and unlabeled instances. By employing a Gaussian process framework, this mutual information based instance selection problem can be f...

متن کامل

An Optimization Based Framework for Dynamic Batch Mode Active Learning

Active learning techniques have gained popularity in reducing human effort to annotate data instances for inducing a classifier. When faced with large quantities of unlabeled data, such algorithms automatically select the salient and representative samples for manual annotation. Batch mode active learning schemes have been recently proposed to select a batch of data instances simultaneously, ra...

متن کامل

Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

Active learning can lead to a dramatic reduction in labeling effort. However, in many practical implementations (such as crowdsourcing, surveys, high-throughput experimental design), it is preferable to query labels for batches of examples to be labelled in parallel. While several heuristics have been proposed for batch-mode active learning, little is known about their theoretical performance. ...

متن کامل

Dynamic Batch Mode Active Learning via L1 Regularization

We propose a method for dynamic batch mode active learning where the batch size and selection criteria are integrated into a single formulation.

متن کامل

A Batch Mode Active Learning for Networked Data

We study a novel problem of batch mode active learning for networked data. In this problem, data instances are connected with links and their labels are correlated with each other, and the goal of batch mode active learning is to exploit the link-based dependencies and node-specific content information to actively select a batch of instances to query the user for learning an accurate model to l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007