Towards Displacement-Based Seismic Design of Modern Unreinforced Masonry Structures
نویسندگان
چکیده
Unreinforced masonry (URM) structures are known to be rather vulnerable to seismic loading. Modern URM buildings with reinforced concrete (RC) slabs might, however, have an acceptable seismic performance for regions of low to moderate seismicity. In particular in countries of moderate seismicity it is often difficult to demonstrate the seismic safety of modern URM buildings by means of force-based design methods. Displacement-based design methods are known to lead to more realistic and less conservative results, opening up hence new opportunities for the use of structural masonry. An effective implementation of displacement-based design approaches requires reliable estimates of the structure’s force and displacement capacity. This paper contributes to this endeavour by taking a fresh look at the drift capacity of URM walls with hollow clay bricks and mortar joints of normal thickness. It discusses in particular the influence of the size of the test unit and the applied loading history and loading velocity on the drift capacities of URM walls.
منابع مشابه
Effect of Unreinforced Masonry Infill Walls on Seismic Performance of Reinforced Concrete Framed Structures
Unreinforced Masonry infill walls (URM) are commonly used in the Reinforced Concrete (RC) framed structures as interiors and exteriors partition walls. Although they usually are not considered in the structural analysis and design, their influence on the seismic performance of the framed structures is significant. A common practice in the modern and old RC buildings is to remove the URM walls i...
متن کاملSeismic Design of Box-Type Unreinforced Masonry Buildings Through Direct Displacement-Based Approach
In the last decade, displacement-based seismic design procedures have been recognised to be effective alternatives to force-based design (FBD) methods. Indeed, displacement based design (DBD) may allow the structural engineer to get more realistic predictions of local and global deformations of the structure, and hence damage, under design earthquakes. This facilitates the achievement of perfor...
متن کاملDevelopment of a displacement-based design approach for modern mixed RC-URM wall structures
The recent re-assessment of the seismic hazard in Europe led for many regions of low to moderate seismicity to an increase in the seismic demand. As a consequence, several modern unreinforced masonry (URM) buildings, constructed with reinforced concrete (RC) slabs that provide an efficient rigid diaphragm action, no longer satisfy the seismic design check and have been retrofitted by adding or ...
متن کاملForce-based Finite Element for Modelling the Cyclic Behaviour of Unreinforced Masonry Piers
A performance-based seismic assessment of unreinforced masonry (URM) buildings requires the use of reliable models, able to predict their nonlinear force-displacement response including their displacement capacity. Among the possible methodologies, at different levels of complexity, macro-modelling using structural component elements has proved to be an approach that can provide satisfactory ac...
متن کاملModelling of the Cyclic Response of an Unreinforced Masonry Wall through a Force Based Beam Element
The seismic assessment of existing masonry buildings is based on the prediction of their nonlinear response under lateral loading. This requires a reliable estimation of the force and displacement demand. For this purpose, modelling strategies using structural component elements are widely applied both in research and in engineering practice, since they can provide a satisfactory description of...
متن کامل