A Generalization of the Multishift QR Algorithm

نویسندگان

  • Raf Vandebril
  • David S. Watkins
چکیده

Recently a generalization of Francis’s implicitly shifted QR algorithm was proposed, notably widening the class of matrices admitting low-cost implicit QR steps. This unifying framework covered the methods and theory for Hessenberg and inverse Hessenberg matrices and furnished also new, single-shifted, QR-type methods for, e.g., CMVmatrices. Convergence of this approach was only suggested by numerical experiments. No theoretical claims supporting the results were presented. In this paper we present multishift variants of these new algorithms. We also provide a convergence theory that shows that the new algorithm performs nested subspace iterations on rational Krylov subspaces. Numerical experiments confirm the validity of the theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Multishift QR Algorithm. Part I: Maintaining Well-Focused Shifts and Level 3 Performance

This paper presents a small-bulge multishift variation of the multishift QR algorithm that avoids the phenomenon of shift blurring, which retards convergence and limits the number of simultaneous shifts. It replaces the large diagonal bulge in the multishift QR sweep with a chain of many small bulges. The small-bulge multishift QR sweep admits nearly any number of simultaneous shifts—even hundr...

متن کامل

The Multishift QR Algorithm. Part II: Aggressive Early Deflation

Aggressive early deflation is a QR algorithm deflation strategy that takes advantage of matrix perturbations outside of the subdiagonal entries of the Hessenberg QR iterate. It identifies and deflates converged eigenvalues long before the classic small-subdiagonal strategy would. The new deflation strategy enhances the performance of conventional large-bulge multishift QR algorithms, but it is ...

متن کامل

Parallel library software for the multishift QR algorithm with aggressive early deflation

Library software implementing a parallel small-bulge multishift QR algorithm with aggressive early deflation (AED) targeting distributed memory high-performance computing systems is presented. Starting from recent developments of the parallel multishift QR algorithm [Granat et al., SIAM J. Sci. Comput. 32(4), 2010], we describe a number of algorithmic and implementation improvements. These incl...

متن کامل

Shift Blurring in the Qr Algorithm

The QR algorithm is one of the most widely used algorithms for calculating the eigenvalues of matrices. The multishift QR algorithm with multiplicity m is a version that eeects m iterations of the QR algorithm at a time. It is known that roundoo errors cause the multishift QR algorithm to perform poorly when m is large. In this paper the mechanism by which the shifts are transmitted through the...

متن کامل

A Wilkinson-like multishift QR algorithm for symmetric eigenvalue problems and its global convergence

In 1989, Bai and Demmel proposed the multishift QR algorithm for eigenvalue problems. Although the global convergence property of the algorithm (i.e., the convergence from any initial matrix) still remains an open question for general nonsymmetric matrices, in 1992 Jiang focused on symmetric tridiagonal case and gave a global convergence proof for the generalized Rayleigh quotient shifts. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2012