High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature.
نویسندگان
چکیده
Endospores of proteolytic type B Clostridium botulinum TMW 2.357 and Bacillus amyloliquefaciens TMW 2.479 are currently described as the most high-pressure-resistant bacterial spores relevant to food intoxication and spoilage in combined pressure-temperature applications. The effects of combined pressure (0.1 to 1,400 MPa) and temperature (70 to 120 degrees C) treatments were determined for these spores. A process employing isothermal holding times was established to distinguish pressure from temperature effects. An increase in pressure (600 to 1,400 MPa) and an increase in temperature (90 to 110 degrees C) accelerated the inactivation of C. botulinum spores. However, incubation at 100 degrees C, 110 degrees C, or 120 degrees C with ambient pressure resulted in faster spore reduction than treatment with 600 or 800 MPa at the same temperature. This pressure-mediated spore protection was also observed at 120 degrees C and 800, 1,000, or 1,200 MPa with the more heat-tolerant B. amyloliquefaciens TMW 2.479 spores. Inactivation curves for both strains showed a pronounced pressure-dependent tailing, which indicates that a small fraction of the spore populations survives conditions of up to 120 degrees C and 1.4 GPa in isothermal treatments. Because of this tailing and the fact that pressure-temperature combinations stabilizing bacterial endospores vary from strain to strain, food safety must be ensured in case-by-case studies demonstrating inactivation or nongrowth of C. botulinum with realistic contamination rates in the respective pressurized food and equipment.
منابع مشابه
High pressure thermal inactivation of Clostridium botulinum type E endospores – kinetic modeling and mechanistic insights
Cold-tolerant, neurotoxigenic, endospore forming Clostridium (C.) botulinum type E belongs to the non-proteolytic physiological C. botulinum group II, is primarily associated with aquatic environments, and presents a safety risk for seafood. High pressure thermal (HPT) processing exploiting the synergistic effect of pressure and temperature can be used to inactivate bacterial endospores. We inv...
متن کاملUltra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk
Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk...
متن کاملThe control of Clostridium botulinum during extended storage of pressure-treated, cooked chicken
High pressure processing (HPP) is used as a post-process decontamination treatment to ensure that cooked chicken is free from Listeria monocytogenes and other food poisoning bacteria. However HPP does not inactivate bacterial endospores and the conditions in cooked chicken could support the growth of Clostridium botulinum. Therefore some method for controlling the germination of spores and thei...
متن کاملDormant Bacillus spores protect their DNA in crystalline nucleoids against environmental stress.
Bacterial spores of the genera Bacillus and Clostridium are extremely resistant against desiccation, heat and radiation and involved in the spread and pathogenicity of health relevant species such as Bacillus anthracis (anthrax) or Clostridium botulinum. While the resistance of spores is very well documented, underlying mechanisms are not fully understood. In this study we show, by cryo-electro...
متن کاملExpression and Purification of Neurotoxin-Associated Protein HA-33/A from Clostridium botulinum and Evaluation of Its Antigenicity
Background: Botulinum neurotoxin (BoNT) complexes consist of neurotoxin and neurotoxin-associated proteins. Hemagglutinin-33 (HA-33) is a member of BoNT type A (BoNT/A) complex. Considering the protective role of HA-33 in preservation of BoNT/A in gastrointestinal harsh conditions and also its adjuvant role, recombinant production of this protein is favorable. Thus in this study, HA-33 was expr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 72 5 شماره
صفحات -
تاریخ انتشار 2006